biweekly-contest-80
A
Statement
Metadata
- Link: 强密码检验器 II
- Difficulty: Easy
- Tag:
如果一个密码满足以下所有条件,我们称它是一个 强 密码:
- 它有至少
8
个字符。 - 至少包含 一个小写英文 字母。
- 至少包含 一个大写英文 字母。
- 至少包含 一个数字 。
- 至少包含 一个特殊字符 。特殊字符为:
"!@#$%^&*()-+"
中的一个。 - 它 不 包含
2
个连续相同的字符(比方说"aab"
不符合该条件,但是"aba"
符合该条件)。
给你一个字符串 password
,如果它是一个 强 密码,返回 true
,否则返回 false
。
示例 1:
输入:password = "IloveLe3tcode!"
输出:true
解释:密码满足所有的要求,所以我们返回 true 。
示例 2:
输入:password = "Me+You–IsMyDream"
输出:false
解释:密码不包含数字,且包含 2 个连续相同的字符。所以我们返回 false 。
示例 3:
输入:password = "1aB!"
输出:false
解释:密码不符合长度要求。所以我们返回 false 。
提示:
1 <= password.length <= 100
password
包含字母,数字和"!@#$%^&*()-+"
这些特殊字符。
Metadata
- Link: Strong Password Checker II
- Difficulty: Easy
- Tag:
A password is said to be strong if it satisfies all the following criteria:
- It has at least
8
characters. - It contains at least one lowercase letter.
- It contains at least one uppercase letter.
- It contains at least one digit.
- It contains at least one special character. The special characters are the characters in the following string:
"!@#$%^&*()-+"
. - It does not contain
2
of the same character in adjacent positions (i.e.,"aab"
violates this condition, but"aba"
does not).
Given a string password
, return true
if it is a strong password. Otherwise, return false
.
Example 1:
Input: password = "IloveLe3tcode!"
Output: true
Explanation: The password meets all the requirements. Therefore, we return true.
Example 2:
Input: password = "Me+You–IsMyDream"
Output: false
Explanation: The password does not contain a digit and also contains 2 of the same character in adjacent positions. Therefore, we return false.
Example 3:
Input: password = "1aB!"
Output: false
Explanation: The password does not meet the length requirement. Therefore, we return false.
Constraints:
1 <= password.length <= 100
password
consists of letters, digits, and special characters:"!@#$%^&*()-+"
.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
bool strongPasswordCheckerII(string s) {
int l = s.length();
if (l < 8) {
return false;
}
bool a = 0, b = 0, c = 0, d = 0;
for (int i = 0; i < l; i++) {
if (i + 1 < l && s[i] == s[i + 1]) {
return false;
}
if (s[i] >= 'a' && s[i] <= 'z') {
a = 1;
}
if (s[i] >= 'A' && s[i] <= 'Z') {
b = 1;
}
if (s[i] >= '0' && s[i] <= '9') {
c = 1;
}
if (string("!@#$%^&*()-+").find(s[i]) != string::npos) {
d = 1;
}
}
return a && b && c && d;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
B
Statement
Metadata
- Link: 咒语和药水的成功对数
- Difficulty: Medium
- Tag:
给你两个正整数数组 spells
和 potions
,长度分别为 n
和 m
,其中 spells[i]
表示第 i
个咒语的能量强度,potions[j]
表示第 j
瓶药水的能量强度。
同时给你一个整数 success
。一个咒语和药水的能量强度 相乘 如果 大于等于 success
,那么它们视为一对 成功 的组合。
请你返回一个长度为 n
的整数数组 pairs
,其中 pairs[i]
是能跟第 i
个咒语成功组合的 药水 数目。
示例 1:
输入:spells = [5,1,3], potions = [1,2,3,4,5], success = 7
输出:[4,0,3]
解释:
- 第 0 个咒语:5 * [1,2,3,4,5] = [5,10,15,20,25] 。总共 4 个成功组合。
- 第 1 个咒语:1 * [1,2,3,4,5] = [1,2,3,4,5] 。总共 0 个成功组合。
- 第 2 个咒语:3 * [1,2,3,4,5] = [3,6,9,12,15] 。总共 3 个成功组合。
所以返回 [4,0,3] 。
示例 2:
输入:spells = [3,1,2], potions = [8,5,8], success = 16
输出:[2,0,2]
解释:
- 第 0 个咒语:3 * [8,5,8] = [24,15,24] 。总共 2 个成功组合。
- 第 1 个咒语:1 * [8,5,8] = [8,5,8] 。总共 0 个成功组合。
- 第 2 个咒语:2 * [8,5,8] = [16,10,16] 。总共 2 个成功组合。
所以返回 [2,0,2] 。
提示:
n == spells.length
m == potions.length
1 <= n, m <= 105
1 <= spells[i], potions[i] <= 105
1 <= success <= 1010
Metadata
- Link: Successful Pairs of Spells and Potions
- Difficulty: Medium
- Tag:
You are given two positive integer arrays spells
and potions
, of length n
and m
respectively, where spells[i]
represents the strength of the ith
spell and potions[j]
represents the strength of the jth
potion.
You are also given an integer success
. A spell and potion pair is considered successful if the product of their strengths is at least success
.
Return an integer array pairs
of length n
where pairs[i]
is the number of potions that will form a successful pair with the ith
spell.
Example 1:
Input: spells = [5,1,3], potions = [1,2,3,4,5], success = 7
Output: [4,0,3]
Explanation:
- 0th spell: 5 * [1,2,3,4,5] = [5,10,15,20,25]. 4 pairs are successful.
- 1st spell: 1 * [1,2,3,4,5] = [1,2,3,4,5]. 0 pairs are successful.
- 2nd spell: 3 * [1,2,3,4,5] = [3,6,9,12,15]. 3 pairs are successful.
Thus, [4,0,3] is returned.
Example 2:
Input: spells = [3,1,2], potions = [8,5,8], success = 16
Output: [2,0,2]
Explanation:
- 0th spell: 3 * [8,5,8] = [24,15,24]. 2 pairs are successful.
- 1st spell: 1 * [8,5,8] = [8,5,8]. 0 pairs are successful.
- 2nd spell: 2 * [8,5,8] = [16,10,16]. 2 pairs are successful.
Thus, [2,0,2] is returned.
Constraints:
n == spells.length
m == potions.length
1 <= n, m <= 105
1 <= spells[i], potions[i] <= 105
1 <= success <= 1010
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <vector>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
vector<int> successfulPairs(vector<int> &s, vector<int> &p, long long success) {
sort(p.begin(), p.end());
int n = p.size();
auto res = vector<int>();
for (const auto &_s : s) {
auto it = lower_bound(p.begin(), p.end(), (success + _s - 1) / _s) - p.begin();
res.push_back(n - it);
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
C
Statement
Metadata
- Link: 替换字符后匹配
- Difficulty: Hard
- Tag:
给你两个字符串 s
和 sub
。同时给你一个二维字符数组 mappings
,其中 mappings[i] = [oldi, newi]
表示你可以替换 sub
中任意数目的 oldi
个字符,替换成 newi
。sub
中每个字符 不能 被替换超过一次。
如果使用 mappings
替换 0 个或者若干个字符,可以将 sub
变成 s
的一个子字符串,请你返回 true
,否则返回 false
。
一个 子字符串 是字符串中连续非空的字符序列。
示例 1:
输入:s = "fool3e7bar", sub = "leet", mappings = [["e","3"],["t","7"],["t","8"]]
输出:true
解释:将 sub 中第一个 'e' 用 '3' 替换,将 't' 用 '7' 替换。
现在 sub = "l3e7" ,它是 s 的子字符串,所以我们返回 true 。
示例 2:
输入:s = "fooleetbar", sub = "f00l", mappings = [["o","0"]]
输出:false
解释:字符串 "f00l" 不是 s 的子串且没有可以进行的修改。
注意我们不能用 'o' 替换 '0' 。
示例 3:
输入:s = "Fool33tbaR", sub = "leetd", mappings = [["e","3"],["t","7"],["t","8"],["d","b"],["p","b"]]
输出:true
解释:将 sub 里第一个和第二个 'e' 用 '3' 替换,用 'b' 替换 sub 里的 'd' 。
得到 sub = "l33tb" ,它是 s 的子字符串,所以我们返回 true 。
提示:
1 <= sub.length <= s.length <= 5000
0 <= mappings.length <= 1000
mappings[i].length == 2
oldi != newi
s
和sub
只包含大写和小写英文字母和数字。oldi
和newi
是大写、小写字母或者是个数字。
Metadata
- Link: Match Substring After Replacement
- Difficulty: Hard
- Tag:
You are given two strings s
and sub
. You are also given a 2D character array mappings
where mappings[i] = [oldi, newi]
indicates that you may replace any number of oldi
characters of sub
with newi
. Each character in sub
cannot be replaced more than once.
Return true
if it is possible to make sub
a substring of s
by replacing zero or more characters according to mappings
. Otherwise, return false
.
A substring is a contiguous non-empty sequence of characters within a string.
Example 1:
Input: s = "fool3e7bar", sub = "leet", mappings = [["e","3"],["t","7"],["t","8"]]
Output: true
Explanation: Replace the first 'e' in sub with '3' and 't' in sub with '7'.
Now sub = "l3e7" is a substring of s, so we return true.
Example 2:
Input: s = "fooleetbar", sub = "f00l", mappings = [["o","0"]]
Output: false
Explanation: The string "f00l" is not a substring of s and no replacements can be made.
Note that we cannot replace '0' with 'o'.
Example 3:
Input: s = "Fool33tbaR", sub = "leetd", mappings = [["e","3"],["t","7"],["t","8"],["d","b"],["p","b"]]
Output: true
Explanation: Replace the first and second 'e' in sub with '3' and 'd' in sub with 'b'.
Now sub = "l33tb" is a substring of s, so we return true.
Constraints:
1 <= sub.length <= s.length <= 5000
0 <= mappings.length <= 1000
mappings[i].length == 2
oldi != newi
s
andsub
consist of uppercase and lowercase English letters and digits.oldi
andnewi
are either uppercase or lowercase English letters or digits.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
bool matchReplacement(string s, string sub, vector<vector<char>> &mappings) {
map<char, std::string> mp;
for (int i = 'a'; i <= 'z'; i++) {
mp[char(i)] = string(1, char(i));
}
for (int i = 'A'; i <= 'Z'; i++) {
mp[char(i)] = string(1, char(i));
}
for (int i = '0'; i <= '9'; i++) {
mp[char(i)] = string(1, char(i));
}
for (auto &mapping : mappings) {
mp[mapping[0]] += mapping[1];
}
for (auto &[k, v] : mp) {
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
}
int n = int(s.length());
int m = int(sub.length());
for (int i = 0; i < n; i++) {
if (i + m > n) {
break;
}
bool ok = 1;
for (int j = 0; j < m; j++) {
if (mp[sub[j]].find(s[i + j]) == string::npos) {
ok = 0;
break;
}
}
if (ok) {
return true;
}
}
return false;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
D
Statement
Metadata
- Link: 统计得分小于 K 的子数组数目
- Difficulty: Hard
- Tag:
一个数字的 分数 定义为数组之和 乘以 数组的长度。
- 比方说,
[1, 2, 3, 4, 5]
的分数为(1 + 2 + 3 + 4 + 5) * 5 = 75
。
给你一个正整数数组 nums
和一个整数 k
,请你返回 nums
中分数 严格小于 k
的 非空整数子数组数目。
子数组 是数组中的一个连续元素序列。
示例 1:
输入:nums = [2,1,4,3,5], k = 10
输出:6
解释:
有 6 个子数组的分数小于 10 :
- [2] 分数为 2 * 1 = 2 。
- [1] 分数为 1 * 1 = 1 。
- [4] 分数为 4 * 1 = 4 。
- [3] 分数为 3 * 1 = 3 。
- [5] 分数为 5 * 1 = 5 。
- [2,1] 分数为 (2 + 1) * 2 = 6 。
注意,子数组 [1,4] 和 [4,3,5] 不符合要求,因为它们的分数分别为 10 和 36,但我们要求子数组的分数严格小于 10 。
示例 2:
输入:nums = [1,1,1], k = 5
输出:5
解释:
除了 [1,1,1] 以外每个子数组分数都小于 5 。
[1,1,1] 分数为 (1 + 1 + 1) * 3 = 9 ,大于 5 。
所以总共有 5 个子数组得分小于 5 。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 105
1 <= k <= 1015
Metadata
- Link: Count Subarrays With Score Less Than K
- Difficulty: Hard
- Tag:
The score of an array is defined as the product of its sum and its length.
- For example, the score of
[1, 2, 3, 4, 5]
is(1 + 2 + 3 + 4 + 5) * 5 = 75
.
Given a positive integer array nums
and an integer k
, return the number of non-empty subarrays of nums
whose score is strictly less than k
.
A subarray is a contiguous sequence of elements within an array.
Example 1:
Input: nums = [2,1,4,3,5], k = 10
Output: 6
Explanation:
The 6 subarrays having scores less than 10 are:
- [2] with score 2 * 1 = 2.
- [1] with score 1 * 1 = 1.
- [4] with score 4 * 1 = 4.
- [3] with score 3 * 1 = 3.
- [5] with score 5 * 1 = 5.
- [2,1] with score (2 + 1) * 2 = 6.
Note that subarrays such as [1,4] and [4,3,5] are not considered because their scores are 10 and 36 respectively, while we need scores strictly less than 10.
Example 2:
Input: nums = [1,1,1], k = 5
Output: 5
Explanation:
Every subarray except [1,1,1] has a score less than 5.
[1,1,1] has a score (1 + 1 + 1) * 3 = 9, which is greater than 5.
Thus, there are 5 subarrays having scores less than 5.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 105
1 <= k <= 1015
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
long long countSubarrays(vector<int> &nums, long long k) {
ll res = 0;
int r = -1;
int n = int(nums.size());
ll sum = 0;
for (int l = 0; l < n; l++) {
while (r + 1 < n) {
ll nx_sum = sum + nums[r + 1];
ll len = r + 1 - l + 1;
if (nx_sum * len >= k) {
break;
}
sum = nx_sum;
++r;
}
res += r - l + 1;
if (r < l) {
r = l;
} else {
sum -= nums[l];
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif