111.minimum-depth-of-binary-tree
Statement
Metadata
- Link: 二叉树的最小深度
- Difficulty: Easy
- Tag:
树
深度优先搜索
广度优先搜索
二叉树
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:2
示例 2:
输入:root = [2,null,3,null,4,null,5,null,6]
输出:5
提示:
- 树中节点数的范围在
[0, 105]
内 -1000 <= Node.val <= 1000
Metadata
- Link: Minimum Depth of Binary Tree
- Difficulty: Easy
- Tag:
Tree
Depth-First Search
Breadth-First Search
Binary Tree
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
Note: A leaf is a node with no children.
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: 2
Example 2:
Input: root = [2,null,3,null,4,null,5,null,6]
Output: 5
Constraints:
- The number of nodes in the tree is in the range
[0, 105]
. -1000 <= Node.val <= 1000
Solution
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.res = 1000000
def dfs(self, rt: TreeNode, d: int) -> None:
if not rt.left and not rt.right:
self.res = min(self.res, d)
if rt.left:
self.dfs(rt.left, d + 1)
if rt.right:
self.dfs(rt.right, d + 1)
def minDepth(self, root: TreeNode) -> int:
if not root:
return 0
self.dfs(root, 1)
return self.res
最后更新: October 11, 2023