810.chalkboard-xor-game
Statement
Metadata
- Link: 黑板异或游戏
- Difficulty: Hard
- Tag:
位运算
脑筋急转弯
数组
数学
博弈
黑板上写着一个非负整数数组 nums[i]
。
Alice 和 Bob 轮流从黑板上擦掉一个数字,Alice 先手。如果擦除一个数字后,剩余的所有数字按位异或运算得出的结果等于 0
的话,当前玩家游戏失败。 另外,如果只剩一个数字,按位异或运算得到它本身;如果无数字剩余,按位异或运算结果为 0
。
并且,轮到某个玩家时,如果当前黑板上所有数字按位异或运算结果等于 0
,这个玩家获胜。
假设两个玩家每步都使用最优解,当且仅当 Alice 获胜时返回 true
。
示例 1:
输入: nums = [1,1,2]
输出: false
解释:
Alice 有两个选择: 擦掉数字 1 或 2。
如果擦掉 1, 数组变成 [1, 2]。剩余数字按位异或得到 1 XOR 2 = 3。那么 Bob 可以擦掉任意数字,因为 Alice 会成为擦掉最后一个数字的人,她总是会输。
如果 Alice 擦掉 2,那么数组变成[1, 1]。剩余数字按位异或得到 1 XOR 1 = 0。Alice 仍然会输掉游戏。
示例 2:
输入: nums = [0,1]
输出: true
示例 3:
输入: nums = [1,2,3]
输出: true
提示:
1 <= nums.length <= 1000
0 <= nums[i] < 216
Metadata
- Link: Chalkboard XOR Game
- Difficulty: Hard
- Tag:
Bit Manipulation
Brainteaser
Array
Math
Game Theory
You are given an array of integers nums
represents the numbers written on a chalkboard.
Alice and Bob take turns erasing exactly one number from the chalkboard, with Alice starting first. If erasing a number causes the bitwise XOR of all the elements of the chalkboard to become 0
, then that player loses. The bitwise XOR of one element is that element itself, and the bitwise XOR of no elements is 0
.
Also, if any player starts their turn with the bitwise XOR of all the elements of the chalkboard equal to 0
, then that player wins.
Return true
if and only if Alice wins the game, assuming both players play optimally.
Example 1:
Input: nums = [1,1,2]
Output: false
Explanation:
Alice has two choices: erase 1 or erase 2.
If she erases 1, the nums array becomes [1, 2]. The bitwise XOR of all the elements of the chalkboard is 1 XOR 2 = 3. Now Bob can remove any element he wants, because Alice will be the one to erase the last element and she will lose.
If Alice erases 2 first, now nums become [1, 1]. The bitwise XOR of all the elements of the chalkboard is 1 XOR 1 = 0. Alice will lose.
Example 2:
Input: nums = [0,1]
Output: true
Example 3:
Input: nums = [1,2,3]
Output: true
Constraints:
1 <= nums.length <= 1000
0 <= nums[i] < 216