879.profitable-schemes
Statement
Metadata
- Link: 盈利计划
- Difficulty: Hard
- Tag:
数组
动态规划
集团里有 n
名员工,他们可以完成各种各样的工作创造利润。
第 i
种工作会产生 profit[i]
的利润,它要求 group[i]
名成员共同参与。如果成员参与了其中一项工作,就不能参与另一项工作。
工作的任何至少产生 minProfit
利润的子集称为 盈利计划 。并且工作的成员总数最多为 n
。
有多少种计划可以选择?因为答案很大,所以 返回结果模 10^9 + 7
的值。
示例 1:
输入:n = 5, minProfit = 3, group = [2,2], profit = [2,3]
输出:2
解释:至少产生 3 的利润,该集团可以完成工作 0 和工作 1 ,或仅完成工作 1 。
总的来说,有两种计划。
示例 2:
输入:n = 10, minProfit = 5, group = [2,3,5], profit = [6,7,8]
输出:7
解释:至少产生 5 的利润,只要完成其中一种工作就行,所以该集团可以完成任何工作。
有 7 种可能的计划:(0),(1),(2),(0,1),(0,2),(1,2),以及 (0,1,2) 。
提示:
1 <= n <= 100
0 <= minProfit <= 100
1 <= group.length <= 100
1 <= group[i] <= 100
profit.length == group.length
0 <= profit[i] <= 100
Metadata
- Link: Profitable Schemes
- Difficulty: Hard
- Tag:
Array
Dynamic Programming
There is a group of n
members, and a list of various crimes they could commit. The ith
crime generates a profit[i]
and requires group[i]
members to participate in it. If a member participates in one crime, that member can't participate in another crime.
Let's call a profitable scheme any subset of these crimes that generates at least minProfit
profit, and the total number of members participating in that subset of crimes is at most n
.
Return the number of schemes that can be chosen. Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: n = 5, minProfit = 3, group = [2,2], profit = [2,3]
Output: 2
Explanation: To make a profit of at least 3, the group could either commit crimes 0 and 1, or just crime 1.
In total, there are 2 schemes.
Example 2:
Input: n = 10, minProfit = 5, group = [2,3,5], profit = [6,7,8]
Output: 7
Explanation: To make a profit of at least 5, the group could commit any crimes, as long as they commit one.
There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).
Constraints:
1 <= n <= 100
0 <= minProfit <= 100
1 <= group.length <= 100
1 <= group[i] <= 100
profit.length == group.length
0 <= profit[i] <= 100
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const int mod = 1e9 + 7;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int profitableSchemes(int n, int minProfit, vector<int> &group, vector<int> &profit) {
auto f = vector<vector<int>>(n + 1, vector<int>(minProfit + 5, 0));
f[0][0] = 1;
int m = group.size();
for (int i = 0; i < m; i++) {
for (int j = n; j >= 0; j--) {
for (int k = minProfit; k >= 0; k--) {
int w = group[i];
int v = profit[i];
if (j + w <= n) {
int _j = j + w;
int _k = (k + v) >= minProfit ? minProfit : (k + v);
f[_j][_k] += f[j][k];
if (f[_j][_k] >= mod) {
f[_j][_k] -= mod;
}
}
}
}
}
int res = 0;
if (minProfit == 0) {
res += 1;
}
for (int i = 1; i <= n; i++) {
res += f[i][minProfit];
if (res >= mod) {
res -= mod;
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif