跳转至

weekly-contest-281

A

Statement

Metadata

给你一个正整数 num ,请你统计并返回 小于或等于 num 且各位数字之和为 偶数 的正整数的数目。

正整数的 各位数字之和 是其所有位上的对应数字相加的结果。

 

示例 1:

输入:num = 4
输出:2
解释:
只有 2 和 4 满足小于等于 4 且各位数字之和为偶数。  

示例 2:

输入:num = 30
输出:14
解释:
只有 14 个整数满足小于等于 30 且各位数字之和为偶数,分别是: 
2、4、6、8、11、13、15、17、19、20、22、24、26 和 28 。

 

提示:

  • 1 <= num <= 1000

Metadata

Given a positive integer num, return the number of positive integers less than or equal to num whose digit sums are even.

The digit sum of a positive integer is the sum of all its digits.

 

Example 1:

Input: num = 4
Output: 2
Explanation:
The only integers less than or equal to 4 whose digit sums are even are 2 and 4.  

Example 2:

Input: num = 30
Output: 14
Explanation:
The 14 integers less than or equal to 30 whose digit sums are even are
2, 4, 6, 8, 11, 13, 15, 17, 19, 20, 22, 24, 26, and 28.

 

Constraints:

  • 1 <= num <= 1000

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    int countEven(int num) {
        auto f = [](int x) {
            int res = 0;
            while (x) {
                res += x % 10;
                x /= 10;
            }
            return res;
        };

        int res = 0;
        for (int i = 1; i <= num; i++) {
            res += f(i) % 2 == 0;
        }

        return res;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

B

Statement

Metadata

给你一个链表的头节点 head ,该链表包含由 0 分隔开的一连串整数。链表的 开端末尾 的节点都满足 Node.val == 0

对于每两个相邻的 0 ,请你将它们之间的所有节点合并成一个节点,其值是所有已合并节点的值之和。然后将所有 0 移除,修改后的链表不应该含有任何 0

 返回修改后链表的头节点 head

 

示例 1:

输入:head = [0,3,1,0,4,5,2,0]
输出:[4,11]
解释:
上图表示输入的链表。修改后的链表包含:
- 标记为绿色的节点之和:3 + 1 = 4
- 标记为红色的节点之和:4 + 5 + 2 = 11

示例 2:

输入:head = [0,1,0,3,0,2,2,0]
输出:[1,3,4]
解释:
上图表示输入的链表。修改后的链表包含:
- 标记为绿色的节点之和:1 = 1
- 标记为红色的节点之和:3 = 3
- 标记为黄色的节点之和:2 + 2 = 4

 

提示:

  • 列表中的节点数目在范围 [3, 2 * 105]
  • 0 <= Node.val <= 1000
  • 存在连续两个 Node.val == 0 的节点
  • 链表的 开端末尾 节点都满足 Node.val == 0

Metadata

You are given the head of a linked list, which contains a series of integers separated by 0's. The beginning and end of the linked list will have Node.val == 0.

For every two consecutive 0's, merge all the nodes lying in between them into a single node whose value is the sum of all the merged nodes. The modified list should not contain any 0's.

Return the head of the modified linked list.

 

Example 1:

Input: head = [0,3,1,0,4,5,2,0]
Output: [4,11]
Explanation: 
The above figure represents the given linked list. The modified list contains
- The sum of the nodes marked in green: 3 + 1 = 4.
- The sum of the nodes marked in red: 4 + 5 + 2 = 11.

Example 2:

Input: head = [0,1,0,3,0,2,2,0]
Output: [1,3,4]
Explanation: 
The above figure represents the given linked list. The modified list contains
- The sum of the nodes marked in green: 1 = 1.
- The sum of the nodes marked in red: 3 = 3.
- The sum of the nodes marked in yellow: 2 + 2 = 4.

 

Constraints:

  • The number of nodes in the list is in the range [3, 2 * 105].
  • 0 <= Node.val <= 1000
  • There are no two consecutive nodes with Node.val == 0.
  • The beginning and end of the linked list have Node.val == 0.

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */

#ifdef LOCAL

struct ListNode {
    int val;
    ListNode *next;
    ListNode() : val(0), next(nullptr) {}
    ListNode(int x) : val(x), next(nullptr) {}
    ListNode(int x, ListNode *next) : val(x), next(next) {}
};

#endif

class Solution {
public:
    ListNode *mergeNodes(ListNode *head) {
        vector<int> val;
        int tmp = 0;
        while (head) {
            if (head->val == 0) {
                if (tmp > 0) {
                    val.push_back(tmp);
                }
                tmp = 0;
            } else {
                tmp += head->val;
            }
            head = head->next;
        }

        ListNode *res = new ListNode();
        ListNode *_head = res;
        for (auto &v : val) {
            res->next = new ListNode(v);
            res = res->next;
        }

        return _head->next;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

C

Statement

Metadata

给你一个字符串 s 和一个整数 repeatLimit ,用 s 中的字符构造一个新字符串 repeatLimitedString ,使任何字母 连续 出现的次数都不超过 repeatLimit 次。你不必使用 s 中的全部字符。

返回 字典序最大的 repeatLimitedString

如果在字符串 ab 不同的第一个位置,字符串 a 中的字母在字母表中出现时间比字符串 b 对应的字母晚,则认为字符串 a 比字符串 b 字典序更大 。如果字符串中前 min(a.length, b.length) 个字符都相同,那么较长的字符串字典序更大。

 

示例 1:

输入:s = "cczazcc", repeatLimit = 3
输出:"zzcccac"
解释:使用 s 中的所有字符来构造 repeatLimitedString "zzcccac"。
字母 'a' 连续出现至多 1 次。
字母 'c' 连续出现至多 3 次。
字母 'z' 连续出现至多 2 次。
因此,没有字母连续出现超过 repeatLimit 次,字符串是一个有效的 repeatLimitedString 。
该字符串是字典序最大的 repeatLimitedString ,所以返回 "zzcccac" 。
注意,尽管 "zzcccca" 字典序更大,但字母 'c' 连续出现超过 3 次,所以它不是一个有效的 repeatLimitedString 。

示例 2:

输入:s = "aababab", repeatLimit = 2
输出:"bbabaa"
解释:
使用 s 中的一些字符来构造 repeatLimitedString "bbabaa"。 
字母 'a' 连续出现至多 2 次。 
字母 'b' 连续出现至多 2 次。 
因此,没有字母连续出现超过 repeatLimit 次,字符串是一个有效的 repeatLimitedString 。 
该字符串是字典序最大的 repeatLimitedString ,所以返回 "bbabaa" 。 
注意,尽管 "bbabaaa" 字典序更大,但字母 'a' 连续出现超过 2 次,所以它不是一个有效的 repeatLimitedString 。

 

提示:

  • 1 <= repeatLimit <= s.length <= 105
  • s 由小写英文字母组成

Metadata

You are given a string s and an integer repeatLimit. Construct a new string repeatLimitedString using the characters of s such that no letter appears more than repeatLimit times in a row. You do not have to use all characters from s.

Return the lexicographically largest repeatLimitedString possible.

A string a is lexicographically larger than a string b if in the first position where a and b differ, string a has a letter that appears later in the alphabet than the corresponding letter in b. If the first min(a.length, b.length) characters do not differ, then the longer string is the lexicographically larger one.

 

Example 1:

Input: s = "cczazcc", repeatLimit = 3
Output: "zzcccac"
Explanation: We use all of the characters from s to construct the repeatLimitedString "zzcccac".
The letter 'a' appears at most 1 time in a row.
The letter 'c' appears at most 3 times in a row.
The letter 'z' appears at most 2 times in a row.
Hence, no letter appears more than repeatLimit times in a row and the string is a valid repeatLimitedString.
The string is the lexicographically largest repeatLimitedString possible so we return "zzcccac".
Note that the string "zzcccca" is lexicographically larger but the letter 'c' appears more than 3 times in a row, so it is not a valid repeatLimitedString.

Example 2:

Input: s = "aababab", repeatLimit = 2
Output: "bbabaa"
Explanation: We use only some of the characters from s to construct the repeatLimitedString "bbabaa". 
The letter 'a' appears at most 2 times in a row.
The letter 'b' appears at most 2 times in a row.
Hence, no letter appears more than repeatLimit times in a row and the string is a valid repeatLimitedString.
The string is the lexicographically largest repeatLimitedString possible so we return "bbabaa".
Note that the string "bbabaaa" is lexicographically larger but the letter 'a' appears more than 2 times in a row, so it is not a valid repeatLimitedString.

 

Constraints:

  • 1 <= repeatLimit <= s.length <= 105
  • s consists of lowercase English letters.

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    string repeatLimitedString(string s, int repeatLimit) {
        vector<int> cnt(30, 0);
        for (const auto &c : s) {
            ++cnt[c - 'a'];
        }

        string res = "@";
        int sum = 0;
        while (true) {
            int f = 0;

            for (int i = 25; i >= 0; i--) {
                if (cnt[i] == 0) {
                    continue;
                }

                if (sum >= repeatLimit && i == res.back() - 'a') {
                    continue;
                }

                if (i == res.back() - 'a') {
                    ++sum;
                } else {
                    sum = 1;
                }

                res += char('a' + i);
                --cnt[i];
                f = 1;

                break;
            }

            if (f == 0) {
                break;
            }
        }

        return res.substr(1);
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

D

Statement

Metadata

给你一个下标从 0 开始、长度为 n 的整数数组 nums 和一个整数 k ,返回满足下述条件的下标对 (i, j) 的数目:

  • 0 <= i < j <= n - 1
  • nums[i] * nums[j] 能被 k 整除。

 

示例 1:

输入:nums = [1,2,3,4,5], k = 2
输出:7
解释:
共有 7 对下标的对应积可以被 2 整除:
(0, 1)、(0, 3)、(1, 2)、(1, 3)、(1, 4)、(2, 3) 和 (3, 4)
它们的积分别是 2、4、6、8、10、12 和 20 。
其他下标对,例如 (0, 2) 和 (2, 4) 的乘积分别是 3 和 15 ,都无法被 2 整除。  

示例 2:

输入:nums = [1,2,3,4], k = 5
输出:0
解释:不存在对应积可以被 5 整除的下标对。

 

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i], k <= 105

Metadata

Given a 0-indexed integer array nums of length n and an integer k, return the number of pairs (i, j) such that:

  • 0 <= i < j <= n - 1 and
  • nums[i] * nums[j] is divisible by k.

 

Example 1:

Input: nums = [1,2,3,4,5], k = 2
Output: 7
Explanation: 
The 7 pairs of indices whose corresponding products are divisible by 2 are
(0, 1), (0, 3), (1, 2), (1, 3), (1, 4), (2, 3), and (3, 4).
Their products are 2, 4, 6, 8, 10, 12, and 20 respectively.
Other pairs such as (0, 2) and (2, 4) have products 3 and 15 respectively, which are not divisible by 2.  

Example 2:

Input: nums = [1,2,3,4], k = 5
Output: 0
Explanation: There does not exist any pair of indices whose corresponding product is divisible by 5.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i], k <= 105

Solution

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair

using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;

using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;

template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
    return a < b ? a = b, 1 : 0;
}

template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
    return a > b ? a = b, 1 : 0;
}

#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head

class Solution {
public:
    const int N = 1e5 + 10;
    const int M = 1e5;

    long long coutPairs(vector<int> &nums, int k) {
        vector<int> cnt(N, 0);
        for (auto &v : nums) {
            ++cnt[v];
        }

        vector<long long> f(N, 0);
        for (int i = 1; i <= M; i++) {
            for (int j = 1; j * i <= M; j++) {
                f[i] += cnt[j * i];
            }
        }

        int n = nums.size();
        long long res = 0;

        for (int i = 0; i < n; i++) {
            int x = nums[i];
            int y = k / __gcd(x, k);
            res += f[y];
            if (1ll * x * x % k == 0) {
                --res;
            }
        }

        return res / 2;
    }
};

#ifdef LOCAL

int main() {
    return 0;
}

#endif

最后更新: October 11, 2023
回到页面顶部