weekly-contest-282
A
Statement
Metadata
- Link: 统计包含给定前缀的字符串
- Difficulty: Easy
- Tag:
给你一个字符串数组 words
和一个字符串 pref
。
返回 words
中以 pref
作为 前缀 的字符串的数目。
字符串 s
的 前缀 就是 s
的任一前导连续字符串。
示例 1:
输入:words = ["pay","attention","practice","attend"], pref
= "at"
输出:2
解释:以 "at" 作为前缀的字符串有两个,分别是:"attention" 和 "attend" 。
示例 2:
输入:words = ["leetcode","win","loops","success"], pref
= "code"
输出:0
解释:不存在以 "code" 作为前缀的字符串。
提示:
1 <= words.length <= 100
1 <= words[i].length, pref.length <= 100
words[i]
和pref
由小写英文字母组成
Metadata
- Link: Counting Words With a Given Prefix
- Difficulty: Easy
- Tag:
You are given an array of strings words
and a string pref
.
Return the number of strings in words
that contain pref
as a prefix.
A prefix of a string s
is any leading contiguous substring of s
.
Example 1:
Input: words = ["pay","attention","practice","attend"], pref
= "at"
Output: 2
Explanation: The 2 strings that contain "at" as a prefix are: "attention" and "attend".
Example 2:
Input: words = ["leetcode","win","loops","success"], pref
= "code"
Output: 0
Explanation: There are no strings that contain "code" as a prefix.
Constraints:
1 <= words.length <= 100
1 <= words[i].length, pref.length <= 100
words[i]
andpref
consist of lowercase English letters.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int prefixCount(vector<string> &words, string pref) {
int n = pref.length();
int res = 0;
for (const auto &w : words) {
if (w.length() >= n && w.substr(0, n) == pref) {
++res;
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
B
Statement
Metadata
- Link: 使两字符串互为字母异位词的最少步骤数
- Difficulty: Medium
- Tag:
给你两个字符串 s
和 t
。在一步操作中,你可以给 s
或者 t
追加 任一字符 。
返回使 s
和 t
互为 字母异位词 所需的最少步骤数。
字母异位词 指字母相同但是顺序不同(或者相同)的字符串。
示例 1:
输入:s = "leetcode", t = "coats"
输出:7
解释:
- 执行 2 步操作,将 "as" 追加到 s = "leetcode" 中,得到 s = "leetcodeas" 。
- 执行 5 步操作,将 "leede" 追加到 t = "coats" 中,得到 t = "coatsleede" 。
"leetcodeas" 和 "coatsleede" 互为字母异位词。
总共用去 2 + 5 = 7 步。
可以证明,无法用少于 7 步操作使这两个字符串互为字母异位词。
示例 2:
输入:s = "night", t = "thing"
输出:0
解释:给出的字符串已经互为字母异位词。因此,不需要任何进一步操作。
提示:
1 <= s.length, t.length <= 2 * 105
s
和t
由小写英文字符组成
Metadata
- Link: Minimum Number of Steps to Make Two Strings Anagram II
- Difficulty: Medium
- Tag:
You are given two strings s
and t
. In one step, you can append any character to either s
or t
.
Return the minimum number of steps to make s
and t
anagrams of each other.
An anagram of a string is a string that contains the same characters with a different (or the same) ordering.
Example 1:
Input: s = "leetcode", t = "coats"
Output: 7
Explanation:
- In 2 steps, we can append the letters in "as" onto s = "leetcode", forming s = "leetcodeas".
- In 5 steps, we can append the letters in "leede" onto t = "coats", forming t = "coatsleede".
"leetcodeas" and "coatsleede" are now anagrams of each other.
We used a total of 2 + 5 = 7 steps.
It can be shown that there is no way to make them anagrams of each other with less than 7 steps.
Example 2:
Input: s = "night", t = "thing"
Output: 0
Explanation: The given strings are already anagrams of each other. Thus, we do not need any further steps.
Constraints:
1 <= s.length, t.length <= 2 * 105
s
andt
consist of lowercase English letters.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int minSteps(string s, string t) {
vector<int> cnts(30, 0), cntt(30, 0);
for (const auto &c : s) {
++cnts[c - 'a'];
}
for (const auto &c : t) {
++cntt[c - 'a'];
}
int res = 0;
for (int i = 0; i < 26; i++) {
res += abs(cnts[i] - cntt[i]);
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
C
Statement
Metadata
- Link: 完成旅途的最少时间
- Difficulty: Medium
- Tag:
给你一个数组 time
,其中 time[i]
表示第 i
辆公交车完成 一趟旅途 所需要花费的时间。
每辆公交车可以 连续 完成多趟旅途,也就是说,一辆公交车当前旅途完成后,可以 立马开始 下一趟旅途。每辆公交车 独立 运行,也就是说可以同时有多辆公交车在运行且互不影响。
给你一个整数 totalTrips
,表示所有公交车 总共 需要完成的旅途数目。请你返回完成 至少 totalTrips
趟旅途需要花费的 最少 时间。
示例 1:
输入:time = [1,2,3], totalTrips = 5
输出:3
解释:
- 时刻 t = 1 ,每辆公交车完成的旅途数分别为 [1,0,0] 。
已完成的总旅途数为 1 + 0 + 0 = 1 。
- 时刻 t = 2 ,每辆公交车完成的旅途数分别为 [2,1,0] 。
已完成的总旅途数为 2 + 1 + 0 = 3 。
- 时刻 t = 3 ,每辆公交车完成的旅途数分别为 [3,1,1] 。
已完成的总旅途数为 3 + 1 + 1 = 5 。
所以总共完成至少 5 趟旅途的最少时间为 3 。
示例 2:
输入:time = [2], totalTrips = 1
输出:2
解释:
只有一辆公交车,它将在时刻 t = 2 完成第一趟旅途。
所以完成 1 趟旅途的最少时间为 2 。
提示:
1 <= time.length <= 105
1 <= time[i], totalTrips <= 107
Metadata
- Link: Minimum Time to Complete Trips
- Difficulty: Medium
- Tag:
You are given an array time
where time[i]
denotes the time taken by the ith
bus to complete one trip.
Each bus can make multiple trips successively; that is, the next trip can start immediately after completing the current trip. Also, each bus operates independently; that is, the trips of one bus do not influence the trips of any other bus.
You are also given an integer totalTrips
, which denotes the number of trips all buses should make in total. Return the minimum time required for all buses to complete at least totalTrips
trips.
Example 1:
Input: time = [1,2,3], totalTrips = 5
Output: 3
Explanation:
- At time t = 1, the number of trips completed by each bus are [1,0,0].
The total number of trips completed is 1 + 0 + 0 = 1.
- At time t = 2, the number of trips completed by each bus are [2,1,0].
The total number of trips completed is 2 + 1 + 0 = 3.
- At time t = 3, the number of trips completed by each bus are [3,1,1].
The total number of trips completed is 3 + 1 + 1 = 5.
So the minimum time needed for all buses to complete at least 5 trips is 3.
Example 2:
Input: time = [2], totalTrips = 1
Output: 2
Explanation:
There is only one bus, and it will complete its first trip at t = 2.
So the minimum time needed to complete 1 trip is 2.
Constraints:
1 <= time.length <= 105
1 <= time[i], totalTrips <= 107
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
long long minimumTime(vector<int> &time, int totalTrips) {
int min_t = *min_element(time.begin(), time.end());
auto check = [&](ll x) {
ll cnt = 0;
for (const auto &t : time) {
cnt += x / t;
}
return cnt >= totalTrips;
};
ll l = 0, r = 1ll * min_t * totalTrips, res = r;
while (r - l >= 0) {
ll mid = (l + r) >> 1;
if (check(mid)) {
r = mid - 1;
res = mid;
} else {
l = mid + 1;
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
D
Statement
Metadata
- Link: 完成比赛的最少时间
- Difficulty: Hard
- Tag:
给你一个下标从 0 开始的二维整数数组 tires
,其中 tires[i] = [fi, ri]
表示第 i
种轮胎如果连续使用,第 x
圈需要耗时 fi * ri(x-1)
秒。
- 比方说,如果
fi = 3
且ri = 2
,且一直使用这种类型的同一条轮胎,那么该轮胎完成第1
圈赛道耗时3
秒,完成第2
圈耗时3 * 2 = 6
秒,完成第3
圈耗时3 * 22 = 12
秒,依次类推。
同时给你一个整数 changeTime
和一个整数 numLaps
。
比赛总共包含 numLaps
圈,你可以选择 任意 一种轮胎开始比赛。每一种轮胎都有 无数条 。每一圈后,你可以选择耗费 changeTime
秒 换成 任意一种轮胎(也可以换成当前种类的新轮胎)。
请你返回完成比赛需要耗费的 最少 时间。
示例 1:
输入:tires = [[2,3],[3,4]], changeTime = 5, numLaps = 4
输出:21
解释:
第 1 圈:使用轮胎 0 ,耗时 2 秒。
第 2 圈:继续使用轮胎 0 ,耗时 2 * 3 = 6 秒。
第 3 圈:耗费 5 秒换一条新的轮胎 0 ,然后耗时 2 秒完成这一圈。
第 4 圈:继续使用轮胎 0 ,耗时 2 * 3 = 6 秒。
总耗时 = 2 + 6 + 5 + 2 + 6 = 21 秒。
完成比赛的最少时间为 21 秒。
示例 2:
输入:tires = [[1,10],[2,2],[3,4]], changeTime = 6, numLaps = 5
输出:25
解释:
第 1 圈:使用轮胎 1 ,耗时 2 秒。
第 2 圈:继续使用轮胎 1 ,耗时 2 * 2 = 4 秒。
第 3 圈:耗时 6 秒换一条新的轮胎 1 ,然后耗时 2 秒完成这一圈。
第 4 圈:继续使用轮胎 1 ,耗时 2 * 2 = 4 秒。
第 5 圈:耗时 6 秒换成轮胎 0 ,然后耗时 1 秒完成这一圈。
总耗时 = 2 + 4 + 6 + 2 + 4 + 6 + 1 = 25 秒。
完成比赛的最少时间为 25 秒。
提示:
1 <= tires.length <= 105
tires[i].length == 2
1 <= fi, changeTime <= 105
2 <= ri <= 105
1 <= numLaps <= 1000
Metadata
- Link: Minimum Time to Finish the Race
- Difficulty: Hard
- Tag:
You are given a 0-indexed 2D integer array tires
where tires[i] = [fi, ri]
indicates that the ith
tire can finish its xth
successive lap in fi * ri(x-1)
seconds.
- For example, if
fi = 3
andri = 2
, then the tire would finish its1st
lap in3
seconds, its2nd
lap in3 * 2 = 6
seconds, its3rd
lap in3 * 22 = 12
seconds, etc.
You are also given an integer changeTime
and an integer numLaps
.
The race consists of numLaps
laps and you may start the race with any tire. You have an unlimited supply of each tire and after every lap, you may change to any given tire (including the current tire type) if you wait changeTime
seconds.
Return the minimum time to finish the race.
Example 1:
Input: tires = [[2,3],[3,4]], changeTime = 5, numLaps = 4
Output: 21
Explanation:
Lap 1: Start with tire 0 and finish the lap in 2 seconds.
Lap 2: Continue with tire 0 and finish the lap in 2 * 3 = 6 seconds.
Lap 3: Change tires to a new tire 0 for 5 seconds and then finish the lap in another 2 seconds.
Lap 4: Continue with tire 0 and finish the lap in 2 * 3 = 6 seconds.
Total time = 2 + 6 + 5 + 2 + 6 = 21 seconds.
The minimum time to complete the race is 21 seconds.
Example 2:
Input: tires = [[1,10],[2,2],[3,4]], changeTime = 6, numLaps = 5
Output: 25
Explanation:
Lap 1: Start with tire 1 and finish the lap in 2 seconds.
Lap 2: Continue with tire 1 and finish the lap in 2 * 2 = 4 seconds.
Lap 3: Change tires to a new tire 1 for 6 seconds and then finish the lap in another 2 seconds.
Lap 4: Continue with tire 1 and finish the lap in 2 * 2 = 4 seconds.
Lap 5: Change tires to tire 0 for 6 seconds then finish the lap in another 1 second.
Total time = 2 + 4 + 6 + 2 + 4 + 6 + 1 = 25 seconds.
The minimum time to complete the race is 25 seconds.
Constraints:
1 <= tires.length <= 105
tires[i].length == 2
1 <= fi, changeTime <= 105
2 <= ri <= 105
1 <= numLaps <= 1000
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
const ll mod = 1e9 + 7;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int minimumFinishTime(vector<vector<int>> &tires, int changeTime, int numLaps) {
vector<long long> fee(20, INT_MAX), f(numLaps + 10, INT_MAX);
for (const auto &tire : tires) {
long long cur = tire[0], inc = tire[1], tot = tire[0];
for (int i = 1; i <= 18; i++) {
fee[i] = min(fee[i], tot);
cur *= inc;
tot += cur;
if (tot >= INT_MAX) {
break;
}
}
}
f[0] = 0;
for (int i = 0; i <= numLaps; i++) {
for (int j = 1; j <= 18; j++) {
if (i + j <= numLaps) {
f[i + j] = min(f[i + j], f[i] + fee[j] + changeTime);
}
}
}
return f[numLaps] - changeTime;
}
};
#ifdef LOCAL
int main() {
{
auto s = new Solution();
auto tires = vector<vector<int>>{
vector<int>{2, 3},
vector<int>{3, 4},
};
auto ans = s->minimumFinishTime(tires, 5, 4);
dbg(ans);
}
return 0;
}
#endif