weekly-contest-291
A
Statement
Metadata
- Link: 移除指定数字得到的最大结果
- Difficulty: Easy
- Tag:
给你一个表示某个正整数的字符串 number
和一个字符 digit
。
从 number
中 恰好 移除 一个 等于 digit
的字符后,找出并返回按 十进制 表示 最大 的结果字符串。生成的测试用例满足 digit
在 number
中出现至少一次。
示例 1:
输入:number = "123", digit = "3"
输出:"12"
解释:"123" 中只有一个 '3' ,在移除 '3' 之后,结果为 "12" 。
示例 2:
输入:number = "1231", digit = "1"
输出:"231"
解释:可以移除第一个 '1' 得到 "231" 或者移除第二个 '1' 得到 "123" 。
由于 231 > 123 ,返回 "231" 。
示例 3:
输入:number = "551", digit = "5"
输出:"51"
解释:可以从 "551" 中移除第一个或者第二个 '5' 。
两种方案的结果都是 "51" 。
提示:
2 <= number.length <= 100
number
由数字'1'
到'9'
组成digit
是'1'
到'9'
中的一个数字digit
在number
中出现至少一次
Metadata
- Link: Remove Digit From Number to Maximize Result
- Difficulty: Easy
- Tag:
You are given a string number
representing a positive integer and a character digit
.
Return the resulting string after removing exactly one occurrence of digit
from number
such that the value of the resulting string in decimal form is maximized. The test cases are generated such that digit
occurs at least once in number
.
Example 1:
Input: number = "123", digit = "3"
Output: "12"
Explanation: There is only one '3' in "123". After removing '3', the result is "12".
Example 2:
Input: number = "1231", digit = "1"
Output: "231"
Explanation: We can remove the first '1' to get "231" or remove the second '1' to get "123".
Since 231 > 123, we return "231".
Example 3:
Input: number = "551", digit = "5"
Output: "51"
Explanation: We can remove either the first or second '5' from "551".
Both result in the string "51".
Constraints:
2 <= number.length <= 100
number
consists of digits from'1'
to'9'
.digit
is a digit from'1'
to'9'
.digit
occurs at least once innumber
.
Solution
B
Statement
Metadata
- Link: 必须拿起的最小连续卡牌数
- Difficulty: Medium
- Tag:
给你一个整数数组 cards
,其中 cards[i]
表示第 i
张卡牌的 值 。如果两张卡牌的值相同,则认为这一对卡牌 匹配 。
返回你必须拿起的最小连续卡牌数,以使在拿起的卡牌中有一对匹配的卡牌。如果无法得到一对匹配的卡牌,返回 -1
。
示例 1:
输入:cards = [3,4,2,3,4,7]
输出:4
解释:拿起卡牌 [3,4,2,3] 将会包含一对值为 3 的匹配卡牌。注意,拿起 [4,2,3,4] 也是最优方案。
示例 2:
输入:cards = [1,0,5,3]
输出:-1
解释:无法找出含一对匹配卡牌的一组连续卡牌。
提示:
1 <= cards.length <= 105
0 <= cards[i] <= 106
Metadata
- Link: Minimum Consecutive Cards to Pick Up
- Difficulty: Medium
- Tag:
You are given an integer array cards
where cards[i]
represents the value of the ith
card. A pair of cards are matching if the cards have the same value.
Return the minimum number of consecutive cards you have to pick up to have a pair of matching cards among the picked cards. If it is impossible to have matching cards, return -1
.
Example 1:
Input: cards = [3,4,2,3,4,7]
Output: 4
Explanation: We can pick up the cards [3,4,2,3] which contain a matching pair of cards with value 3. Note that picking up the cards [4,2,3,4] is also optimal.
Example 2:
Input: cards = [1,0,5,3]
Output: -1
Explanation: There is no way to pick up a set of consecutive cards that contain a pair of matching cards.
Constraints:
1 <= cards.length <= 105
0 <= cards[i] <= 106
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int minimumCardPickup(vector<int> &cards) {
map<int, int> mp;
int n = static_cast<int>(cards.size());
int res = n + 1;
for (int i = 0; i < n; i++) {
int c = cards[i];
if (mp.count(c)) {
res = min<int>(res, i - mp[c] + 1);
}
mp[c] = i;
}
if (res == n + 1) {
res = -1;
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
C
Statement
Metadata
- Link: 含最多 K 个可整除元素的子数组
- Difficulty: Medium
- Tag:
给你一个整数数组 nums
和两个整数 k
和 p
,找出并返回满足要求的不同的子数组数,要求子数组中最多 k
个可被 p
整除的元素。
如果满足下述条件之一,则认为数组 nums1
和 nums2
是 不同 数组:
- 两数组长度 不同 ,或者
- 存在 至少 一个下标
i
满足nums1[i] != nums2[i]
。
子数组 定义为:数组中的连续元素组成的一个 非空 序列。
示例 1:
输入:nums = [2,3,3,2,2], k = 2, p = 2
输出:11
解释:
位于下标 0、3 和 4 的元素都可以被 p = 2 整除。
共计 11 个不同子数组都满足最多含 k = 2 个可以被 2 整除的元素:
[2]、[2,3]、[2,3,3]、[2,3,3,2]、[3]、[3,3]、[3,3,2]、[3,3,2,2]、[3,2]、[3,2,2] 和 [2,2] 。
注意,尽管子数组 [2] 和 [3] 在 nums 中出现不止一次,但统计时只计数一次。
子数组 [2,3,3,2,2] 不满足条件,因为其中有 3 个元素可以被 2 整除。
示例 2:
输入:nums = [1,2,3,4], k = 4, p = 1
输出:10
解释:
nums 中的所有元素都可以被 p = 1 整除。
此外,nums 中的每个子数组都满足最多 4 个元素可以被 1 整除。
因为所有子数组互不相同,因此满足所有限制条件的子数组总数为 10 。
提示:
1 <= nums.length <= 200
1 <= nums[i], p <= 200
1 <= k <= nums.length
Metadata
- Link: K Divisible Elements Subarrays
- Difficulty: Medium
- Tag:
Given an integer array nums
and two integers k
and p
, return the number of distinct subarrays which have at most k
elements divisible by p
.
Two arrays nums1
and nums2
are said to be distinct if:
- They are of different lengths, or
- There exists at least one index
i
wherenums1[i] != nums2[i]
.
A subarray is defined as a non-empty contiguous sequence of elements in an array.
Example 1:
Input: nums = [2,3,3,2,2], k = 2, p = 2
Output: 11
Explanation:
The elements at indices 0, 3, and 4 are divisible by p = 2.
The 11 distinct subarrays which have at most k = 2 elements divisible by 2 are:
[2], [2,3], [2,3,3], [2,3,3,2], [3], [3,3], [3,3,2], [3,3,2,2], [3,2], [3,2,2], and [2,2].
Note that the subarrays [2] and [3] occur more than once in nums, but they should each be counted only once.
The subarray [2,3,3,2,2] should not be counted because it has 3 elements that are divisible by 2.
Example 2:
Input: nums = [1,2,3,4], k = 4, p = 1
Output: 10
Explanation:
All element of nums are divisible by p = 1.
Also, every subarray of nums will have at most 4 elements that are divisible by 1.
Since all subarrays are distinct, the total number of subarrays satisfying all the constraints is 10.
Constraints:
1 <= nums.length <= 200
1 <= nums[i], p <= 200
1 <= k <= nums.length
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int countDistinct(vector<int> &nums, int k, int p) {
int n = static_cast<int>(nums.size());
int l = 0;
int cur = 0;
set<vector<int>> se;
for (int i = 0; i < n; i++) {
int x = nums[i];
if (x % p == 0) {
++cur;
}
while (cur > k) {
if (nums[l] % p == 0) {
--cur;
}
++l;
}
vector<int> v;
for (int j = i; j >= l; j--) {
v.push_back(nums[j]);
se.insert(v);
}
}
return se.size();
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
D
Statement
Metadata
- Link: 字符串的总引力
- Difficulty: Hard
- Tag:
字符串的 引力 定义为:字符串中 不同 字符的数量。
- 例如,
"abbca"
的引力为3
,因为其中有3
个不同字符'a'
、'b'
和'c'
。
给你一个字符串 s
,返回 其所有子字符串的总引力 。
子字符串 定义为:字符串中的一个连续字符序列。
示例 1:
输入:s = "abbca"
输出:28
解释:"abbca" 的子字符串有:
- 长度为 1 的子字符串:"a"、"b"、"b"、"c"、"a" 的引力分别为 1、1、1、1、1,总和为 5 。
- 长度为 2 的子字符串:"ab"、"bb"、"bc"、"ca" 的引力分别为 2、1、2、2 ,总和为 7 。
- 长度为 3 的子字符串:"abb"、"bbc"、"bca" 的引力分别为 2、2、3 ,总和为 7 。
- 长度为 4 的子字符串:"abbc"、"bbca" 的引力分别为 3、3 ,总和为 6 。
- 长度为 5 的子字符串:"abbca" 的引力为 3 ,总和为 3 。
引力总和为 5 + 7 + 7 + 6 + 3 = 28 。
示例 2:
输入:s = "code"
输出:20
解释:"code" 的子字符串有:
- 长度为 1 的子字符串:"c"、"o"、"d"、"e" 的引力分别为 1、1、1、1 ,总和为 4 。
- 长度为 2 的子字符串:"co"、"od"、"de" 的引力分别为 2、2、2 ,总和为 6 。
- 长度为 3 的子字符串:"cod"、"ode" 的引力分别为 3、3 ,总和为 6 。
- 长度为 4 的子字符串:"code" 的引力为 4 ,总和为 4 。
引力总和为 4 + 6 + 6 + 4 = 20 。
提示:
1 <= s.length <= 105
s
由小写英文字母组成
Metadata
- Link: Total Appeal of A String
- Difficulty: Hard
- Tag:
The appeal of a string is the number of distinct characters found in the string.
- For example, the appeal of
"abbca"
is3
because it has3
distinct characters:'a'
,'b'
, and'c'
.
Given a string s
, return the total appeal of all of its substrings.
A substring is a contiguous sequence of characters within a string.
Example 1:
Input: s = "abbca"
Output: 28
Explanation: The following are the substrings of "abbca":
- Substrings of length 1: "a", "b", "b", "c", "a" have an appeal of 1, 1, 1, 1, and 1 respectively. The sum is 5.
- Substrings of length 2: "ab", "bb", "bc", "ca" have an appeal of 2, 1, 2, and 2 respectively. The sum is 7.
- Substrings of length 3: "abb", "bbc", "bca" have an appeal of 2, 2, and 3 respectively. The sum is 7.
- Substrings of length 4: "abbc", "bbca" have an appeal of 3 and 3 respectively. The sum is 6.
- Substrings of length 5: "abbca" has an appeal of 3. The sum is 3.
The total sum is 5 + 7 + 7 + 6 + 3 = 28.
Example 2:
Input: s = "code"
Output: 20
Explanation: The following are the substrings of "code":
- Substrings of length 1: "c", "o", "d", "e" have an appeal of 1, 1, 1, and 1 respectively. The sum is 4.
- Substrings of length 2: "co", "od", "de" have an appeal of 2, 2, and 2 respectively. The sum is 6.
- Substrings of length 3: "cod", "ode" have an appeal of 3 and 3 respectively. The sum is 6.
- Substrings of length 4: "code" has an appeal of 4. The sum is 4.
The total sum is 4 + 6 + 6 + 4 = 20.
Constraints:
1 <= s.length <= 105
s
consists of lowercase English letters.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <vector>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
long long appealSum(string s) {
ll res = 0;
auto pos = vector<int>(26, -1);
auto calc = [&](int r) -> ll {
ll res = 0;
auto f = vector<int>(pos);
sort(f.begin(), f.end());
reverse(f.begin(), f.end());
int cur = 0;
for (int i = 0; i < 26; i++) {
if (f[i] == -1) {
break;
}
res += 1ll * (r - f[i]) * cur;
r = f[i];
++cur;
}
res += 1ll * (r + 1) * cur;
return res;
};
int n = static_cast<int>(s.length());
for (int i = 0; i < n; i++) {
char c = s[i];
pos[c - 'a'] = i;
res += calc(i);
// cout << calc(i) << endl;
}
// cout << "---" << endl;
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif