weekly-contest-296
A
Statement
Metadata
- Link: 极大极小游戏
- Difficulty: Easy
- Tag:
给你一个下标从 0 开始的整数数组 nums
,其长度是 2
的幂。
对 nums
执行下述算法:
- 设
n
等于nums
的长度,如果n == 1
,终止 算法过程。否则,创建 一个新的整数数组newNums
,新数组长度为n / 2
,下标从 0 开始。 - 对于满足
0 <= i < n / 2
的每个 偶数 下标i
,将newNums[i]
赋值 为min(nums[2 * i], nums[2 * i + 1])
。 - 对于满足
0 <= i < n / 2
的每个 奇数 下标i
,将newNums[i]
赋值 为max(nums[2 * i], nums[2 * i + 1])
。 - 用
newNums
替换nums
。 - 从步骤 1 开始 重复 整个过程。
执行算法后,返回 nums
中剩下的那个数字。
示例 1:
输入:nums = [1,3,5,2,4,8,2,2]
输出:1
解释:重复执行算法会得到下述数组。
第一轮:nums = [1,5,4,2]
第二轮:nums = [1,4]
第三轮:nums = [1]
1 是最后剩下的那个数字,返回 1 。
示例 2:
输入:nums = [3]
输出:3
解释:3 就是最后剩下的数字,返回 3 。
提示:
1 <= nums.length <= 1024
1 <= nums[i] <= 109
nums.length
是2
的幂
Metadata
- Link: Min Max Game
- Difficulty: Easy
- Tag:
You are given a 0-indexed integer array nums
whose length is a power of 2
.
Apply the following algorithm on nums
:
- Let
n
be the length ofnums
. Ifn == 1
, end the process. Otherwise, create a new 0-indexed integer arraynewNums
of lengthn / 2
. - For every even index
i
where0 <= i < n / 2
, assign the value ofnewNums[i]
asmin(nums[2 * i], nums[2 * i + 1])
. - For every odd index
i
where0 <= i < n / 2
, assign the value ofnewNums[i]
asmax(nums[2 * i], nums[2 * i + 1])
. - Replace the array
nums
withnewNums
. - Repeat the entire process starting from step 1.
Return the last number that remains in nums
after applying the algorithm.
Example 1:
Input: nums = [1,3,5,2,4,8,2,2]
Output: 1
Explanation: The following arrays are the results of applying the algorithm repeatedly.
First: nums = [1,5,4,2]
Second: nums = [1,4]
Third: nums = [1]
1 is the last remaining number, so we return 1.
Example 2:
Input: nums = [3]
Output: 3
Explanation: 3 is already the last remaining number, so we return 3.
Constraints:
1 <= nums.length <= 1024
1 <= nums[i] <= 109
nums.length
is a power of2
.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <vector>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int minMaxGame(vector<int> &nums) {
int n = nums.size();
while (n > 1) {
vector<int> tmp(n >> 1, 0);
for (int i = 0; i < n / 2; i++) {
if (i % 2 == 0) {
tmp[i] = min(nums[2 * i], nums[2 * i + 1]);
} else {
tmp[i] = max(nums[2 * i], nums[2 * i + 1]);
}
}
nums.swap(tmp);
n >>= 1;
}
return nums[0];
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
B
Statement
Metadata
- Link: 划分数组使最大差为 K
- Difficulty: Medium
- Tag:
给你一个整数数组 nums
和一个整数 k
。你可以将 nums
划分成一个或多个 子序列 ,使 nums
中的每个元素都 恰好 出现在一个子序列中。
在满足每个子序列中最大值和最小值之间的差值最多为 k
的前提下,返回需要划分的 最少 子序列数目。
子序列 本质是一个序列,可以通过删除另一个序列中的某些元素(或者不删除)但不改变剩下元素的顺序得到。
示例 1:
输入:nums = [3,6,1,2,5], k = 2
输出:2
解释:
可以将 nums 划分为两个子序列 [3,1,2] 和 [6,5] 。
第一个子序列中最大值和最小值的差值是 3 - 1 = 2 。
第二个子序列中最大值和最小值的差值是 6 - 5 = 1 。
由于创建了两个子序列,返回 2 。可以证明需要划分的最少子序列数目就是 2 。
示例 2:
输入:nums = [1,2,3], k = 1
输出:2
解释:
可以将 nums 划分为两个子序列 [1,2] 和 [3] 。
第一个子序列中最大值和最小值的差值是 2 - 1 = 1 。
第二个子序列中最大值和最小值的差值是 3 - 3 = 0 。
由于创建了两个子序列,返回 2 。注意,另一种最优解法是将 nums 划分成子序列 [1] 和 [2,3] 。
示例 3:
输入:nums = [2,2,4,5], k = 0
输出:3
解释:
可以将 nums 划分为三个子序列 [2,2]、[4] 和 [5] 。
第一个子序列中最大值和最小值的差值是 2 - 2 = 0 。
第二个子序列中最大值和最小值的差值是 4 - 4 = 0 。
第三个子序列中最大值和最小值的差值是 5 - 5 = 0 。
由于创建了三个子序列,返回 3 。可以证明需要划分的最少子序列数目就是 3 。
提示:
1 <= nums.length <= 105
0 <= nums[i] <= 105
0 <= k <= 105
Metadata
- Link: Partition Array Such That Maximum Difference Is K
- Difficulty: Medium
- Tag:
You are given an integer array nums
and an integer k
. You may partition nums
into one or more subsequences such that each element in nums
appears in exactly one of the subsequences.
Return the minimum number of subsequences needed such that the difference between the maximum and minimum values in each subsequence is at most k
.
A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: nums = [3,6,1,2,5], k = 2
Output: 2
Explanation:
We can partition nums into the two subsequences [3,1,2] and [6,5].
The difference between the maximum and minimum value in the first subsequence is 3 - 1 = 2.
The difference between the maximum and minimum value in the second subsequence is 6 - 5 = 1.
Since two subsequences were created, we return 2. It can be shown that 2 is the minimum number of subsequences needed.
Example 2:
Input: nums = [1,2,3], k = 1
Output: 2
Explanation:
We can partition nums into the two subsequences [1,2] and [3].
The difference between the maximum and minimum value in the first subsequence is 2 - 1 = 1.
The difference between the maximum and minimum value in the second subsequence is 3 - 3 = 0.
Since two subsequences were created, we return 2. Note that another optimal solution is to partition nums into the two subsequences [1] and [2,3].
Example 3:
Input: nums = [2,2,4,5], k = 0
Output: 3
Explanation:
We can partition nums into the three subsequences [2,2], [4], and [5].
The difference between the maximum and minimum value in the first subsequences is 2 - 2 = 0.
The difference between the maximum and minimum value in the second subsequences is 4 - 4 = 0.
The difference between the maximum and minimum value in the third subsequences is 5 - 5 = 0.
Since three subsequences were created, we return 3. It can be shown that 3 is the minimum number of subsequences needed.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 105
0 <= k <= 105
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int partitionArray(vector<int> &nums, int k) {
sort(nums.begin(), nums.end());
int res = 1;
int l = 0;
for (int i = 0; i < nums.size(); i++) {
if (nums[i] - nums[l] > k) {
l = i;
++res;
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
C
Statement
Metadata
- Link: 替换数组中的元素
- Difficulty: Medium
- Tag:
给你一个下标从 0 开始的数组 nums
,它包含 n
个 互不相同 的正整数。请你对这个数组执行 m
个操作,在第 i
个操作中,你需要将数字 operations[i][0]
替换成 operations[i][1]
。
题目保证在第 i
个操作中:
operations[i][0]
在nums
中存在。operations[i][1]
在nums
中不存在。
请你返回执行完所有操作后的数组。
示例 1:
输入:nums = [1,2,4,6], operations = [[1,3],[4,7],[6,1]]
输出:[3,2,7,1]
解释:我们对 nums 执行以下操作:
- 将数字 1 替换为 3 。nums 变为 [3,2,4,6] 。
- 将数字 4 替换为 7 。nums 变为 [3,2,7,6] 。
- 将数字 6 替换为 1 。nums 变为 [3,2,7,1] 。
返回最终数组 [3,2,7,1] 。
示例 2:
输入:nums = [1,2], operations = [[1,3],[2,1],[3,2]]
输出:[2,1]
解释:我们对 nums 执行以下操作:
- 将数字 1 替换为 3 。nums 变为 [3,2] 。
- 将数字 2 替换为 1 。nums 变为 [3,1] 。
- 将数字 3 替换为 2 。nums 变为 [2,1] 。
返回最终数组 [2,1] 。
提示:
n == nums.length
m == operations.length
1 <= n, m <= 105
nums
中所有数字 互不相同 。operations[i].length == 2
1 <= nums[i], operations[i][0], operations[i][1] <= 106
- 在执行第
i
个操作时,operations[i][0]
在nums
中存在。 - 在执行第
i
个操作时,operations[i][1]
在nums
中不存在。
Metadata
- Link: Replace Elements in an Array
- Difficulty: Medium
- Tag:
You are given a 0-indexed array nums
that consists of n
distinct positive integers. Apply m
operations to this array, where in the ith
operation you replace the number operations[i][0]
with operations[i][1]
.
It is guaranteed that in the ith
operation:
operations[i][0]
exists innums
.operations[i][1]
does not exist innums
.
Return the array obtained after applying all the operations.
Example 1:
Input: nums = [1,2,4,6], operations = [[1,3],[4,7],[6,1]]
Output: [3,2,7,1]
Explanation: We perform the following operations on nums:
- Replace the number 1 with 3. nums becomes [3,2,4,6].
- Replace the number 4 with 7. nums becomes [3,2,7,6].
- Replace the number 6 with 1. nums becomes [3,2,7,1].
We return the final array [3,2,7,1].
Example 2:
Input: nums = [1,2], operations = [[1,3],[2,1],[3,2]]
Output: [2,1]
Explanation: We perform the following operations to nums:
- Replace the number 1 with 3. nums becomes [3,2].
- Replace the number 2 with 1. nums becomes [3,1].
- Replace the number 3 with 2. nums becomes [2,1].
We return the array [2,1].
Constraints:
n == nums.length
m == operations.length
1 <= n, m <= 105
- All the values of
nums
are distinct. operations[i].length == 2
1 <= nums[i], operations[i][0], operations[i][1] <= 106
operations[i][0]
will exist innums
when applying theith
operation.operations[i][1]
will not exist innums
when applying theith
operation.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <vector>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T& a, const S& b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T& a, const S& b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
const int N = 1e6 + 10;
int f[N];
// 1 2
// 2 3
// 3 1
// 3 2
class Solution {
public:
Solution() {
for (int i = 1; i <= 1e6; i++) {
f[i] = i;
}
}
vector<int> arrayChange(vector<int>& nums, vector<vector<int>>& operations) {
int n = operations.size();
for (int i = n - 1; i >= 0; i--) {
const auto& o = operations[i];
f[o[0]] = f[o[1]];
}
for (auto& a : nums) {
a = f[a];
}
for (const auto& o : operations) {
f[o[0]] = o[0];
}
return nums;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
D
Statement
Metadata
- Link: 设计一个文本编辑器
- Difficulty: Hard
- Tag:
请你设计一个带光标的文本编辑器,它可以实现以下功能:
- 添加:在光标所在处添加文本。
- 删除:在光标所在处删除文本(模拟键盘的删除键)。
- 移动:将光标往左或者往右移动。
当删除文本时,只有光标左边的字符会被删除。光标会留在文本内,也就是说任意时候 0 <= cursor.position <= currentText.length
都成立。
请你实现 TextEditor
类:
TextEditor()
用空文本初始化对象。void addText(string text)
将text
添加到光标所在位置。添加完后光标在text
的右边。int deleteText(int k)
删除光标左边k
个字符。返回实际删除的字符数目。string cursorLeft(int k)
将光标向左移动k
次。返回移动后光标左边min(10, len)
个字符,其中len
是光标左边的字符数目。string cursorRight(int k)
将光标向右移动k
次。返回移动后光标左边min(10, len)
个字符,其中len
是光标左边的字符数目。
示例 1:
输入:
["TextEditor", "addText", "deleteText", "addText", "cursorRight", "cursorLeft", "deleteText", "cursorLeft", "cursorRight"]
[[], ["leetcode"], [4], ["practice"], [3], [8], [10], [2], [6]]
输出:
[null, null, 4, null, "etpractice", "leet", 4, "", "practi"]
解释:
TextEditor textEditor = new TextEditor(); // 当前 text 为 "|" 。('|' 字符表示光标)
textEditor.addText("leetcode"); // 当前文本为 "leetcode|" 。
textEditor.deleteText(4); // 返回 4
// 当前文本为 "leet|" 。
// 删除了 4 个字符。
textEditor.addText("practice"); // 当前文本为 "leetpractice|" 。
textEditor.cursorRight(3); // 返回 "etpractice"
// 当前文本为 "leetpractice|".
// 光标无法移动到文本以外,所以无法移动。
// "etpractice" 是光标左边的 10 个字符。
textEditor.cursorLeft(8); // 返回 "leet"
// 当前文本为 "leet|practice" 。
// "leet" 是光标左边的 min(10, 4) = 4 个字符。
textEditor.deleteText(10); // 返回 4
// 当前文本为 "|practice" 。
// 只有 4 个字符被删除了。
textEditor.cursorLeft(2); // 返回 ""
// 当前文本为 "|practice" 。
// 光标无法移动到文本以外,所以无法移动。
// "" 是光标左边的 min(10, 0) = 0 个字符。
textEditor.cursorRight(6); // 返回 "practi"
// 当前文本为 "practi|ce" 。
// "practi" 是光标左边的 min(10, 6) = 6 个字符。
提示:
1 <= text.length, k <= 40
text
只含有小写英文字母。- 调用
addText
,deleteText
,cursorLeft
和cursorRight
的 总 次数不超过2 * 104
次。
Metadata
- Link: Design a Text Editor
- Difficulty: Hard
- Tag:
Design a text editor with a cursor that can do the following:
- Add text to where the cursor is.
- Delete text from where the cursor is (simulating the backspace key).
- Move the cursor either left or right.
When deleting text, only characters to the left of the cursor will be deleted. The cursor will also remain within the actual text and cannot be moved beyond it. More formally, we have that 0 <= cursor.position <= currentText.length
always holds.
Implement the TextEditor
class:
TextEditor()
Initializes the object with empty text.void addText(string text)
Appendstext
to where the cursor is. The cursor ends to the right oftext
.int deleteText(int k)
Deletesk
characters to the left of the cursor. Returns the number of characters actually deleted.string cursorLeft(int k)
Moves the cursor to the leftk
times. Returns the lastmin(10, len)
characters to the left of the cursor, wherelen
is the number of characters to the left of the cursor.string cursorRight(int k)
Moves the cursor to the rightk
times. Returns the lastmin(10, len)
characters to the left of the cursor, wherelen
is the number of characters to the left of the cursor.
Example 1:
Input
["TextEditor", "addText", "deleteText", "addText", "cursorRight", "cursorLeft", "deleteText", "cursorLeft", "cursorRight"]
[[], ["leetcode"], [4], ["practice"], [3], [8], [10], [2], [6]]
Output
[null, null, 4, null, "etpractice", "leet", 4, "", "practi"]
Explanation
TextEditor textEditor = new TextEditor(); // The current text is "|". (The '|' character represents the cursor)
textEditor.addText("leetcode"); // The current text is "leetcode|".
textEditor.deleteText(4); // return 4
// The current text is "leet|".
// 4 characters were deleted.
textEditor.addText("practice"); // The current text is "leetpractice|".
textEditor.cursorRight(3); // return "etpractice"
// The current text is "leetpractice|".
// The cursor cannot be moved beyond the actual text and thus did not move.
// "etpractice" is the last 10 characters to the left of the cursor.
textEditor.cursorLeft(8); // return "leet"
// The current text is "leet|practice".
// "leet" is the last min(10, 4) = 4 characters to the left of the cursor.
textEditor.deleteText(10); // return 4
// The current text is "|practice".
// Only 4 characters were deleted.
textEditor.cursorLeft(2); // return ""
// The current text is "|practice".
// The cursor cannot be moved beyond the actual text and thus did not move.
// "" is the last min(10, 0) = 0 characters to the left of the cursor.
textEditor.cursorRight(6); // return "practi"
// The current text is "practi|ce".
// "practi" is the last min(10, 6) = 6 characters to the left of the cursor.
Constraints:
1 <= text.length, k <= 40
text
consists of lowercase English letters.- At most
2 * 104
calls in total will be made toaddText
,deleteText
,cursorLeft
andcursorRight
.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
struct node {
char c;
node *nx;
node *pre;
node(char c) : c(c), nx(nullptr), pre(nullptr) {}
~node() {}
};
class TextEditor {
public:
node *head, *tail, *cur;
TextEditor() {
head = new node('@');
tail = new node('#');
cur = head;
head->nx = tail;
tail->pre = head;
}
~TextEditor() {
while (head->c != '#') {
auto *tmp = head;
head = head->nx;
delete tmp;
}
if (head) {
delete head;
}
}
void addText(string text) {
for (auto c : text) {
node *n = new node(c);
n->pre = cur;
n->nx = cur->nx;
cur->nx->pre = n;
cur->nx = n;
cur = n;
}
}
int deleteText(int k) {
int res = 0;
auto *nx = cur->nx;
for (int i = 0; i < k && cur->c != '@'; i++) {
++res;
auto *tmp = cur;
cur = cur->pre;
delete tmp;
}
cur->nx = nx;
nx->pre = cur;
return res;
}
string cursorLeft(int k) {
for (int i = 0; i < k && cur->c != '@'; i++) {
cur = cur->pre;
}
return getString();
}
string cursorRight(int k) {
for (int i = 0; i < k && cur->nx->c != '#'; i++) {
cur = cur->nx;
}
return getString();
}
string getString() {
string res = "";
auto *tmp = cur;
for (int i = 0; i < 10 && tmp->c != '@'; i++) {
res += tmp->c;
tmp = tmp->pre;
}
reverse(res.begin(), res.end());
return res;
}
};
/**
* Your TextEditor object will be instantiated and called as such:
* TextEditor* obj = new TextEditor();
* obj->addText(text);
* int param_2 = obj->deleteText(k);
* string param_3 = obj->cursorLeft(k);
* string param_4 = obj->cursorRight(k);
*/
#ifdef LOCAL
int main() {
return 0;
}
#endif