weekly-contest-301
A
Statement
Metadata
- Link: 装满杯子需要的最短总时长
- Difficulty: Easy
- Tag:
现有一台饮水机,可以制备冷水、温水和热水。每秒钟,可以装满 2
杯 不同 类型的水或者 1
杯任意类型的水。
给你一个下标从 0 开始、长度为 3
的整数数组 amount
,其中 amount[0]
、amount[1]
和 amount[2]
分别表示需要装满冷水、温水和热水的杯子数量。返回装满所有杯子所需的 最少 秒数。
示例 1:
输入:amount = [1,4,2]
输出:4
解释:下面给出一种方案:
第 1 秒:装满一杯冷水和一杯温水。
第 2 秒:装满一杯温水和一杯热水。
第 3 秒:装满一杯温水和一杯热水。
第 4 秒:装满一杯温水。
可以证明最少需要 4 秒才能装满所有杯子。
示例 2:
输入:amount = [5,4,4]
输出:7
解释:下面给出一种方案:
第 1 秒:装满一杯冷水和一杯热水。
第 2 秒:装满一杯冷水和一杯温水。
第 3 秒:装满一杯冷水和一杯温水。
第 4 秒:装满一杯温水和一杯热水。
第 5 秒:装满一杯冷水和一杯热水。
第 6 秒:装满一杯冷水和一杯温水。
第 7 秒:装满一杯热水。
示例 3:
输入:amount = [5,0,0]
输出:5
解释:每秒装满一杯冷水。
提示:
amount.length == 3
0 <= amount[i] <= 100
Metadata
- Link: Minimum Amount of Time to Fill Cups
- Difficulty: Easy
- Tag:
You have a water dispenser that can dispense cold, warm, and hot water. Every second, you can either fill up 2
cups with different types of water, or 1
cup of any type of water.
You are given a 0-indexed integer array amount
of length 3
where amount[0]
, amount[1]
, and amount[2]
denote the number of cold, warm, and hot water cups you need to fill respectively. Return the minimum number of seconds needed to fill up all the cups.
Example 1:
Input: amount = [1,4,2]
Output: 4
Explanation: One way to fill up the cups is:
Second 1: Fill up a cold cup and a warm cup.
Second 2: Fill up a warm cup and a hot cup.
Second 3: Fill up a warm cup and a hot cup.
Second 4: Fill up a warm cup.
It can be proven that 4 is the minimum number of seconds needed.
Example 2:
Input: amount = [5,4,4]
Output: 7
Explanation: One way to fill up the cups is:
Second 1: Fill up a cold cup, and a hot cup.
Second 2: Fill up a cold cup, and a warm cup.
Second 3: Fill up a cold cup, and a warm cup.
Second 4: Fill up a warm cup, and a hot cup.
Second 5: Fill up a cold cup, and a hot cup.
Second 6: Fill up a cold cup, and a warm cup.
Second 7: Fill up a hot cup.
Example 3:
Input: amount = [5,0,0]
Output: 5
Explanation: Every second, we fill up a cold cup.
Constraints:
amount.length == 3
0 <= amount[i] <= 100
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int fillCups(vector<int> &a) {
int res = 0;
while (true) {
sort(all(a));
if (a.back() == 0) {
break;
}
++res;
--a[2];
if (a[1] > 0) {
--a[1];
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
B
Statement
Metadata
- Link: 无限集中的最小数字
- Difficulty: Medium
- Tag:
现有一个包含所有正整数的集合 [1, 2, 3, 4, 5, …]
。
实现 SmallestInfiniteSet
类:
SmallestInfiniteSet()
初始化 SmallestInfiniteSet 对象以包含 所有 正整数。int popSmallest()
移除 并返回该无限集中的最小整数。void addBack(int num)
如果正整数num
不 存在于无限集中,则将一个num
添加 到该无限集中。
示例:
输入
["SmallestInfiniteSet", "addBack", "popSmallest", "popSmallest", "popSmallest", "addBack", "popSmallest", "popSmallest", "popSmallest"]
[[], [2], [], [], [], [1], [], [], []]
输出
[null, null, 1, 2, 3, null, 1, 4, 5]
解释
SmallestInfiniteSet smallestInfiniteSet = new SmallestInfiniteSet();
smallestInfiniteSet.addBack(2); // 2 已经在集合中,所以不做任何变更。
smallestInfiniteSet.popSmallest(); // 返回 1 ,因为 1 是最小的整数,并将其从集合中移除。
smallestInfiniteSet.popSmallest(); // 返回 2 ,并将其从集合中移除。
smallestInfiniteSet.popSmallest(); // 返回 3 ,并将其从集合中移除。
smallestInfiniteSet.addBack(1); // 将 1 添加到该集合中。
smallestInfiniteSet.popSmallest(); // 返回 1 ,因为 1 在上一步中被添加到集合中,
// 且 1 是最小的整数,并将其从集合中移除。
smallestInfiniteSet.popSmallest(); // 返回 4 ,并将其从集合中移除。
smallestInfiniteSet.popSmallest(); // 返回 5 ,并将其从集合中移除。
提示:
1 <= num <= 1000
- 最多调用
popSmallest
和addBack
方法 共计1000
次
Metadata
- Link: Smallest Number in Infinite Set
- Difficulty: Medium
- Tag:
You have a set which contains all positive integers [1, 2, 3, 4, 5, …]
.
Implement the SmallestInfiniteSet
class:
SmallestInfiniteSet()
Initializes the SmallestInfiniteSet object to contain all positive integers.int popSmallest()
Removes and returns the smallest integer contained in the infinite set.void addBack(int num)
Adds a positive integernum
back into the infinite set, if it is not already in the infinite set.
Example 1:
Input
["SmallestInfiniteSet", "addBack", "popSmallest", "popSmallest", "popSmallest", "addBack", "popSmallest", "popSmallest", "popSmallest"]
[[], [2], [], [], [], [1], [], [], []]
Output
[null, null, 1, 2, 3, null, 1, 4, 5]
Explanation
SmallestInfiniteSet smallestInfiniteSet = new SmallestInfiniteSet();
smallestInfiniteSet.addBack(2); // 2 is already in the set, so no change is made.
smallestInfiniteSet.popSmallest(); // return 1, since 1 is the smallest number, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 2, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 3, and remove it from the set.
smallestInfiniteSet.addBack(1); // 1 is added back to the set.
smallestInfiniteSet.popSmallest(); // return 1, since 1 was added back to the set and
// is the smallest number, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 4, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 5, and remove it from the set.
Constraints:
1 <= num <= 1000
- At most
1000
calls will be made in total topopSmallest
andaddBack
.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
const int N = 1e3 + 5;
class SmallestInfiniteSet {
public:
set<int> s;
SmallestInfiniteSet() {
for (int i = 1; i < N; i++) {
s.insert(i);
}
}
int popSmallest() {
int res = *s.begin();
s.erase(s.begin());
return res;
}
void addBack(int num) {
s.insert(num);
}
};
/**
* Your SmallestInfiniteSet object will be instantiated and called as such:
* SmallestInfiniteSet* obj = new SmallestInfiniteSet();
* int param_1 = obj->popSmallest();
* obj->addBack(num);
*/
#ifdef LOCAL
int main() {
return 0;
}
#endif
C
Statement
Metadata
- Link: 移动片段得到字符串
- Difficulty: Medium
- Tag:
给你两个字符串 start
和 target
,长度均为 n
。每个字符串 仅 由字符 'L'
、'R'
和 ''
组成,其中:
- 字符
'L'
和'R'
表示片段,其中片段'L'
只有在其左侧直接存在一个 空位 时才能向 左 移动,而片段'R'
只有在其右侧直接存在一个 空位 时才能向 右 移动。 - 字符
'
'
表示可以被 任意'L'
或'R'
片段占据的空位。
如果在移动字符串 start
中的片段任意次之后可以得到字符串 target
,返回 true
;否则,返回 false
。
示例 1:
输入:start = "L__R__R", target = "L______RR"
输出:true
解释:可以从字符串 start 获得 target ,需要进行下面的移动:
- 将第一个片段向左移动一步,字符串现在变为 "LR__R_" 。
- 将最后一个片段向右移动一步,字符串现在变为 "L___RR" 。
- 将第二个片段向右移动散步,字符串现在变为 "L______RR" 。
可以从字符串 start 得到 target ,所以返回 true 。
示例 2:
输入:start = "R_L_", target = "__LR"
输出:false
解释:字符串 start 中的 'R' 片段可以向右移动一步得到 "RL" 。
但是,在这一步之后,不存在可以移动的片段,所以无法从字符串 start 得到 target 。
示例 3:
输入:start = "R", target = "R"
输出:false
解释:字符串 start 中的片段只能向右移动,所以无法从字符串 start 得到 target 。
提示:
n == start.length == target.length
1 <= n <= 105
start
和target
由字符'L'
、'R'
和'_'
组成
Metadata
- Link: Move Pieces to Obtain a String
- Difficulty: Medium
- Tag:
You are given two strings start
and target
, both of length n
. Each string consists only of the characters 'L'
, 'R'
, and ''
where:
- The characters
'L'
and'R'
represent pieces, where a piece'L'
can move to the left only if there is a blank space directly to its left, and a piece'R'
can move to the right only if there is a blank space directly to its right. - The character
'
'
represents a blank space that can be occupied by any of the'L'
or'R'
pieces.
Return true
if it is possible to obtain the string target
by moving the pieces of the string start
any number of times. Otherwise, return false
.
Example 1:
Input: start = "L__R__R", target = "L______RR"
Output: true
Explanation: We can obtain the string target from start by doing the following moves:
- Move the first piece one step to the left, start becomes equal to "LR__R_".
- Move the last piece one step to the right, start becomes equal to "L___RR".
- Move the second piece three steps to the right, start becomes equal to "L______RR".
Since it is possible to get the string target from start, we return true.
Example 2:
Input: start = "R_L_", target = "__LR"
Output: false
Explanation: The 'R' piece in the string start can move one step to the right to obtain "RL".
After that, no pieces can move anymore, so it is impossible to obtain the string target from start.
Example 3:
Input: start = "R", target = "R"
Output: false
Explanation: The piece in the string start can move only to the right, so it is impossible to obtain the string target from start.
Constraints:
n == start.length == target.length
1 <= n <= 105
start
andtarget
consist of the characters'L'
,'R'
, and'_'
.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <vector>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
bool canChange(string s, string t) {
int n = int(s.size());
auto f = vector<pair<char, int>>();
auto g = vector<pair<char, int>>();
for (int i = 0; i < n; i++) {
if (s[i] != '_') {
f.push_back({s[i], i});
}
if (t[i] != '_') {
g.push_back({t[i], i});
}
}
int m = int(f.size());
if (m != int(g.size())) {
return false;
}
for (int i = 0; i < m; i++) {
if (f[i].fi != g[i].fi) {
return false;
}
if (f[i].fi == 'L' && f[i].se < g[i].se) {
return false;
}
if (f[i].fi == 'R' && f[i].se > g[i].se) {
return false;
}
}
return true;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
D
Statement
Metadata
- Link: 统计理想数组的数目
- Difficulty: Hard
- Tag:
给你两个整数 n
和 maxValue
,用于描述一个 理想数组 。
对于下标从 0 开始、长度为 n
的整数数组 arr
,如果满足以下条件,则认为该数组是一个 理想数组 :
- 每个
arr[i]
都是从1
到maxValue
范围内的一个值,其中0 <= i < n
。 - 每个
arr[i]
都可以被arr[i - 1]
整除,其中0 < i < n
。
返回长度为 n
的 不同 理想数组的数目。由于答案可能很大,返回对 109 + 7
取余的结果。
示例 1:
输入:n = 2, maxValue = 5
输出:10
解释:存在以下理想数组:
- 以 1 开头的数组(5 个):[1,1]、[1,2]、[1,3]、[1,4]、[1,5]
- 以 2 开头的数组(2 个):[2,2]、[2,4]
- 以 3 开头的数组(1 个):[3,3]
- 以 4 开头的数组(1 个):[4,4]
- 以 5 开头的数组(1 个):[5,5]
共计 5 + 2 + 1 + 1 + 1 = 10 个不同理想数组。
示例 2:
输入:n = 5, maxValue = 3
输出:11
解释:存在以下理想数组:
- 以 1 开头的数组(9 个):
- 不含其他不同值(1 个):[1,1,1,1,1]
- 含一个不同值 2(4 个):[1,1,1,1,2], [1,1,1,2,2], [1,1,2,2,2], [1,2,2,2,2]
- 含一个不同值 3(4 个):[1,1,1,1,3], [1,1,1,3,3], [1,1,3,3,3], [1,3,3,3,3]
- 以 2 开头的数组(1 个):[2,2,2,2,2]
- 以 3 开头的数组(1 个):[3,3,3,3,3]
共计 9 + 1 + 1 = 11 个不同理想数组。
提示:
2 <= n <= 104
1 <= maxValue <= 104
Metadata
- Link: Count the Number of Ideal Arrays
- Difficulty: Hard
- Tag:
You are given two integers n
and maxValue
, which are used to describe an ideal array.
A 0-indexed integer array arr
of length n
is considered ideal if the following conditions hold:
- Every
arr[i]
is a value from1
tomaxValue
, for0 <= i < n
. - Every
arr[i]
is divisible byarr[i - 1]
, for0 < i < n
.
Return the number of distinct ideal arrays of length n
. Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: n = 2, maxValue = 5
Output: 10
Explanation: The following are the possible ideal arrays:
- Arrays starting with the value 1 (5 arrays): [1,1], [1,2], [1,3], [1,4], [1,5]
- Arrays starting with the value 2 (2 arrays): [2,2], [2,4]
- Arrays starting with the value 3 (1 array): [3,3]
- Arrays starting with the value 4 (1 array): [4,4]
- Arrays starting with the value 5 (1 array): [5,5]
There are a total of 5 + 2 + 1 + 1 + 1 = 10 distinct ideal arrays.
Example 2:
Input: n = 5, maxValue = 3
Output: 11
Explanation: The following are the possible ideal arrays:
- Arrays starting with the value 1 (9 arrays):
- With no other distinct values (1 array): [1,1,1,1,1]
- With 2nd distinct value 2 (4 arrays): [1,1,1,1,2], [1,1,1,2,2], [1,1,2,2,2], [1,2,2,2,2]
- With 2nd distinct value 3 (4 arrays): [1,1,1,1,3], [1,1,1,3,3], [1,1,3,3,3], [1,3,3,3,3]
- Arrays starting with the value 2 (1 array): [2,2,2,2,2]
- Arrays starting with the value 3 (1 array): [3,3,3,3,3]
There are a total of 9 + 1 + 1 = 11 distinct ideal arrays.
Constraints:
2 <= n <= 104
1 <= maxValue <= 104
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <vector>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
const int mod = 1e9 + 7;
namespace linear_seq {
typedef long long ll;
typedef vector<ll> VI;
#define rep(i, a, n) for (ll i = a; i < n; i++)
#define pb push_back
#define SZ(x) ((int)(x).size())
ll powmod(ll a, ll b) {
ll res = 1;
a %= mod;
assert(b >= 0);
for (; b; b >>= 1) {
if (b & 1)
res = res * a % mod;
a = a * a % mod;
}
return res;
}
const ll mod = 1e9 + 7;
const int N = 1e5 + 10;
ll res[N], base[N], _c[N], _md[N];
vector<ll> Md;
void mul(ll *a, ll *b, ll k) {
rep(i, 0, k + k) _c[i] = 0;
rep(i, 0, k) if (a[i]) rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
for (ll i = k + k - 1; i >= k; i--)
if (_c[i])
rep(j, 0, SZ(Md)) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
rep(i, 0, k) a[i] = _c[i];
}
// a 系数 b 初值 b[n+1]=a[0]*b[n]+...
ll solve(ll n, VI a, VI b) {
ll ans = 0, pnt = 0;
ll k = SZ(a);
assert(SZ(a) == SZ(b));
rep(i, 0, k) _md[k - 1 - i] = -a[i];
_md[k] = 1;
Md.clear();
rep(i, 0, k) if (_md[i] != 0) Md.push_back(i);
rep(i, 0, k) res[i] = base[i] = 0;
res[0] = 1;
while ((1ll << pnt) <= n) pnt++;
for (ll p = pnt; p >= 0; p--) {
mul(res, res, k);
if ((n >> p) & 1) {
for (ll i = k - 1; i >= 0; i--) res[i + 1] = res[i];
res[0] = 0;
rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
}
}
rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod;
if (ans < 0)
ans += mod;
return ans;
}
VI BM(VI s) {
VI C(1, 1), B(1, 1);
ll L = 0, m = 1, b = 1;
rep(n, 0, SZ(s)) {
ll d = 0;
rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % mod;
if (d == 0)
++m;
else if (2 * L <= n) {
VI T = C;
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m) C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
L = n + 1 - L;
B = T;
b = d;
m = 1;
} else {
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m) C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
++m;
}
}
return C;
}
ll gao(VI a, ll n) {
VI c = BM(a);
c.erase(c.begin());
rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod;
return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
}
}; // namespace linear_seq
class Solution {
public:
int idealArrays(int n, int maxValue) {
const int N = 100;
auto f = vector<vector<int>>(N + 1, vector<int>(maxValue + 5, 0));
for (int i = 1; i <= maxValue; i++) {
f[1][i] = 1;
}
for (int i = 1; i < N; i++) {
auto &cur = f[i];
auto &nx = f[i + 1];
for (int j = 1; j <= maxValue; j++) {
for (int k = 1; j * k <= maxValue; k++) {
nx[j * k] += cur[j];
nx[j * k] %= mod;
}
}
}
auto g = vector<ll>();
for (int i = 1; i <= N; i++) {
g.push_back(0);
for (int j = 1; j <= maxValue; j++) {
g.back() += f[i][j];
g.back() %= mod;
}
}
if (n <= N) {
return g[n - 1];
}
return int(linear_seq::gao(g, n - 1));
}
};
#ifdef LOCAL
int main() {
{
auto s = Solution();
auto res = s.idealArrays(10000, 10000);
dbg(res);
}
return 0;
}
#endif