weekly-contest-316
A
Statement
Metadata
- Link: 判断两个事件是否存在冲突
- Difficulty: Easy
- Tag:
给你两个字符串数组 event1
和 event2
,表示发生在同一天的两个闭区间时间段事件,其中:
event1 = [startTime1, endTime1]
且event2 = [startTime2, endTime2]
事件的时间为有效的 24 小时制且按 HH:MM
格式给出。
当两个事件存在某个非空的交集时(即,某些时刻是两个事件都包含的),则认为出现 冲突 。
如果两个事件之间存在冲突,返回 true
;否则,返回 false
。
示例 1:
输入:event1 = ["01:15","02:00"], event2 = ["02:00","03:00"]
输出:true
解释:两个事件在 2:00 出现交集。
示例 2:
输入:event1 = ["01:00","02:00"], event2 = ["01:20","03:00"]
输出:true
解释:两个事件的交集从 01:20 开始,到 02:00 结束。
示例 3:
输入:event1 = ["10:00","11:00"], event2 = ["14:00","15:00"]
输出:false
解释:两个事件不存在交集。
提示:
evnet1.length == event2.length == 2.
event1[i].length == event2[i].length == 5
startTime1 <= endTime1
startTime2 <= endTime2
- 所有事件的时间都按照
HH:MM
格式给出
Metadata
- Link: Determine if Two Events Have Conflict
- Difficulty: Easy
- Tag:
You are given two arrays of strings that represent two inclusive events that happened on the same day, event1
and event2
, where:
event1 = [startTime1, endTime1]
andevent2 = [startTime2, endTime2]
.
Event times are valid 24 hours format in the form of HH:MM
.
A conflict happens when two events have some non-empty intersection (i.e., some moment is common to both events).
Return true
if there is a conflict between two events. Otherwise, return false
.
Example 1:
Input: event1 = ["01:15","02:00"], event2 = ["02:00","03:00"]
Output: true
Explanation: The two events intersect at time 2:00.
Example 2:
Input: event1 = ["01:00","02:00"], event2 = ["01:20","03:00"]
Output: true
Explanation: The two events intersect starting from 01:20 to 02:00.
Example 3:
Input: event1 = ["10:00","11:00"], event2 = ["14:00","15:00"]
Output: false
Explanation: The two events do not intersect.
Constraints:
evnet1.length == event2.length == 2.
event1[i].length == event2[i].length == 5
startTime1 <= endTime1
startTime2 <= endTime2
- All the event times follow the
HH:MM
format.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
bool haveConflict(vector<string> &event1, vector<string> &event2) {
if (event1[1] < event2[0] || event2[1] < event1[0]) {
return false;
}
return true;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
B
Statement
Metadata
- Link: 最大公因数等于 K 的子数组数目
- Difficulty: Medium
- Tag:
给你一个整数数组 nums
和一个整数 k
,请你统计并返回 nums
的子数组中元素的最大公因数等于 k
的子数组数目。
子数组 是数组中一个连续的非空序列。
数组的最大公因数 是能整除数组中所有元素的最大整数。
示例 1:
输入:nums = [9,3,1,2,6,3], k = 3
输出:4
解释:nums 的子数组中,以 3 作为最大公因数的子数组如下:
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
示例 2:
输入:nums = [4], k = 7
输出:0
解释:不存在以 7 作为最大公因数的子数组。
提示:
1 <= nums.length <= 1000
1 <= nums[i], k <= 109
Metadata
- Link: Number of Subarrays With GCD Equal to K
- Difficulty: Medium
- Tag:
Given an integer array nums
and an integer k
, return the number of subarrays of nums
where the greatest common divisor of the subarray's elements is k
.
A subarray is a contiguous non-empty sequence of elements within an array.
The greatest common divisor of an array is the largest integer that evenly divides all the array elements.
Example 1:
Input: nums = [9,3,1,2,6,3], k = 3
Output: 4
Explanation: The subarrays of nums where 3 is the greatest common divisor of all the subarray's elements are:
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
Example 2:
Input: nums = [4], k = 7
Output: 0
Explanation: There are no subarrays of nums where 7 is the greatest common divisor of all the subarray's elements.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i], k <= 109
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
int subarrayGCD(vector<int> &nums, int k) {
int n = int(nums.size());
int res = 0;
for (int i = 0; i < n; i++) {
int g = 0;
for (int j = i; j < n; j++) {
g = __gcd(g, nums[j]);
if (g == k) {
++res;
}
if (g < k) {
break;
}
}
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
C
Statement
Metadata
- Link: 使数组相等的最小开销
- Difficulty: Hard
- Tag:
给你两个下标从 0 开始的数组 nums
和 cost
,分别包含 n
个 正 整数。
你可以执行下面操作 任意 次:
- 将
nums
中 任意 元素增加或者减小1
。
对第 i
个元素执行一次操作的开销是 cost[i]
。
请你返回使 nums
中所有元素 相等 的 最少 总开销。
示例 1:
输入:nums = [1,3,5,2], cost = [2,3,1,14]
输出:8
解释:我们可以执行以下操作使所有元素变为 2 :
- 增加第 0 个元素 1 次,开销为 2 。
- 减小第 1 个元素 1 次,开销为 3 。
- 减小第 2 个元素 3 次,开销为 1 + 1 + 1 = 3 。
总开销为 2 + 3 + 3 = 8 。
这是最小开销。
示例 2:
输入:nums = [2,2,2,2,2], cost = [4,2,8,1,3]
输出:0
解释:数组中所有元素已经全部相等,不需要执行额外的操作。
提示:
n == nums.length == cost.length
1 <= n <= 105
1 <= nums[i], cost[i] <= 106
Metadata
- Link: Minimum Cost to Make Array Equal
- Difficulty: Hard
- Tag:
You are given two 0-indexed arrays nums
and cost
consisting each of n
positive integers.
You can do the following operation any number of times:
- Increase or decrease any element of the array
nums
by1
.
The cost of doing one operation on the ith
element is cost[i]
.
Return the minimum total cost such that all the elements of the array nums
become equal.
Example 1:
Input: nums = [1,3,5,2], cost = [2,3,1,14]
Output: 8
Explanation: We can make all the elements equal to 2 in the following way:
- Increase the 0th element one time. The cost is 2.
- Decrease the 1st element one time. The cost is 3.
- Decrease the 2nd element three times. The cost is 1 + 1 + 1 = 3.
The total cost is 2 + 3 + 3 = 8.
It can be shown that we cannot make the array equal with a smaller cost.
Example 2:
Input: nums = [2,2,2,2,2], cost = [4,2,8,1,3]
Output: 0
Explanation: All the elements are already equal, so no operations are needed.
Constraints:
n == nums.length == cost.length
1 <= n <= 105
1 <= nums[i], cost[i] <= 106
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
class Solution {
public:
long long minCost(vector<int> &nums, vector<int> &cost) {
int n = int(nums.size());
int mi = *min_element(all(nums));
int mx = *max_element(all(nums));
ll co = 0;
ll res = 0x3f3f3f3f3f3f3f3f;
ll left = 0;
ll right = 0;
auto f = vector<vector<int>>(mx + 5, vector<int>());
for (int i = 0; i < n; i++) {
f[nums[i]].push_back(cost[i]);
co += 1ll * abs(nums[i] - (mi - 1)) * cost[i];
right += cost[i];
}
for (int i = mi; i <= mx; i++) {
co -= right;
co += left;
for (const auto &a : f[i]) {
left += a;
right -= a;
}
res = min(res, co);
}
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif
D
Statement
Metadata
- Link: 使数组相似的最少操作次数
- Difficulty: Hard
- Tag:
给你两个正整数数组 nums
和 target
,两个数组长度相等。
在一次操作中,你可以选择两个 不同 的下标 i
和 j
,其中 0 <= i, j < nums.length
,并且:
- 令
nums[i] = nums[i] + 2
且 - 令
nums[j] = nums[j] - 2
。
如果两个数组中每个元素出现的频率相等,我们称两个数组是 相似 的。
请你返回将 nums
变得与 target
相似的最少操作次数。测试数据保证 nums
一定能变得与 target
相似。
示例 1:
输入:nums = [8,12,6], target = [2,14,10]
输出:2
解释:可以用两步操作将 nums 变得与 target 相似:
- 选择 i = 0 和 j = 2 ,nums = [10,12,4] 。
- 选择 i = 1 和 j = 2 ,nums = [10,14,2] 。
2 次操作是最少需要的操作次数。
示例 2:
输入:nums = [1,2,5], target = [4,1,3]
输出:1
解释:一步操作可以使 nums 变得与 target 相似:
- 选择 i = 1 和 j = 2 ,nums = [1,4,3] 。
示例 3:
输入:nums = [1,1,1,1,1], target = [1,1,1,1,1]
输出:0
解释:数组 nums 已经与 target 相似。
提示:
n == nums.length == target.length
1 <= n <= 105
1 <= nums[i], target[i] <= 106
nums
一定可以变得与target
相似。
Metadata
- Link: Minimum Number of Operations to Make Arrays Similar
- Difficulty: Hard
- Tag:
You are given two positive integer arrays nums
and target
, of the same length.
In one operation, you can choose any two distinct indices i
and j
where 0 <= i, j < nums.length
and:
- set
nums[i] = nums[i] + 2
and - set
nums[j] = nums[j] - 2
.
Two arrays are considered to be similar if the frequency of each element is the same.
Return the minimum number of operations required to make nums
similar to target
. The test cases are generated such that nums
can always be similar to target
.
Example 1:
Input: nums = [8,12,6], target = [2,14,10]
Output: 2
Explanation: It is possible to make nums similar to target in two operations:
- Choose i = 0 and j = 2, nums = [10,12,4].
- Choose i = 1 and j = 2, nums = [10,14,2].
It can be shown that 2 is the minimum number of operations needed.
Example 2:
Input: nums = [1,2,5], target = [4,1,3]
Output: 1
Explanation: We can make nums similar to target in one operation:
- Choose i = 1 and j = 2, nums = [1,4,3].
Example 3:
Input: nums = [1,1,1,1,1], target = [1,1,1,1,1]
Output: 0
Explanation: The array nums is already similiar to target.
Constraints:
n == nums.length == target.length
1 <= n <= 105
1 <= nums[i], target[i] <= 106
- It is possible to make
nums
similar totarget
.
Solution
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define endl "\n"
#define fi first
#define se second
#define all(x) begin(x), end(x)
#define rall rbegin(a), rend(a)
#define bitcnt(x) (__builtin_popcountll(x))
#define complete_unique(a) a.erase(unique(begin(a), end(a)), end(a))
#define mst(x, a) memset(x, a, sizeof(x))
#define MP make_pair
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
using VLL = std::vector<ll>;
using VI = std::vector<int>;
using PII = std::pair<int, int>;
using PLL = std::pair<ll, ll>;
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T, typename S>
inline bool chmax(T &a, const S &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T, typename S>
inline bool chmin(T &a, const S &b) {
return a > b ? a = b, 1 : 0;
}
#ifdef LOCAL
#include <debug.hpp>
#else
#define dbg(...)
#endif
// head
// 6 8 12
// 2 10 14
// 4 -2 -2
// 1 2 5
// 1 3 4
// 1 5 2
// 1 3 4
// 0 -2 2
class Solution {
public:
long long makeSimilar(vector<int> &nums, vector<int> &target) {
int n = int(nums.size());
auto a = vector<vector<int>>(2, vector<int>());
auto b = vector<vector<int>>(2, vector<int>());
for (int i = 0; i < n; i++) {
a[nums[i] % 2].push_back(nums[i]);
b[target[i] % 2].push_back(target[i]);
}
for (int i = 0; i < 2; i++) {
sort(all(a[i]));
sort(all(b[i]));
}
ll res = 0;
for (int i = 0; i < 2; i++) {
int m = int(a[i].size());
for (int j = 0; j < m; j++) {
res += abs(a[i][j] - b[i][j]) / 2;
}
}
res /= 2;
return res;
}
};
#ifdef LOCAL
int main() {
return 0;
}
#endif